There is intense interest in the circuits that guide stem cell behavior. Due to the difficulty in identifying stem cells in tissues, most work has centered on intrinsically-acting factors that control stem cells, or on identifying culture conditions that allow their expansion while yet maintaining their undifferentiated state. Thus, there is significantly less known about the microenvironment that comprises a stem cell's natural niche, even though it provides many of the signals that govern fundamental stem cell properties. Understanding niche-stem cell interactions is central to unraveling the circuitry necessary to use these cells in regenerative medicine. One of the most well-understood stem cell-niche systems is the Drosophila testis, because the stem cells and their niche are precisely defined and the outlines of a regulatory program are in place. The testis niche maintains both germline and somatic stem cells (GSCs and SSCs, respectively). Here, two essential SSC factors, lines and zfh-1, are focused upon, and their study has led us to a reconsideration of the rules governing this well-established stem cell-niche model. This proposal addresses conceptually significant facets of stem cell-niche biology. First, there are precious few systems where one can at high resolution investigate the genetic circuitry that discriminates a stem cell from its niche cell during development.
Aim 1 A seeks to define the role of lines and its partner protein bowl in mediating SSC-niche fate choice in gonadogenesis. Since a neural stem cell can also generate cells of its niche, interest in the circuitry identified here will be high. Second, Hedgehog signaling has been implicated in the maintenance of various stem cell types, including cancer stem cells, but the particular characteristics that Hh signaling assigns to stem cells have remained elusive.
Aim 1 B seeks to define the role of Hh in SSCs, in particular, assessing which of the defining characteristics of stem cells are regulated by Hh signaling. Third, understanding the mechanisms that repress differentiation in stem cells is a major goal of much work in regenerative medicine.
Aim 2 A seeks to identify the mechanism whereby Zfh-1 blocks differentiation and confers stem cell properties to somatic cells.
Aim 2 A seeks to define how Zfh-1 cooperates (non-autonomously) with STAT activation in GSCs.
Aim 2 C proposes complementary approaches to identify genes under Zfh-1 control that help accomplish both of these tasks. The prospects are also excellent that our work can contribute in a fundamental manner to this aspect of stem cell biology. Public Health Relevance: There is intense interest in the circuits that guide stem cell behavior. Understanding niche-stem cell interactions is central to unraveling the circuitry necessary to use these cells in regenerative medicine. This proposal addresses conceptually significant facets of stem cell-niche biology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM060804-11
Application #
7791394
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Haynes, Susan R
Project Start
1999-08-01
Project End
2012-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
11
Fiscal Year
2010
Total Cost
$337,178
Indirect Cost
Name
University of Pennsylvania
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ly, Dan; Resch, Erin; Ordiway, George et al. (2017) Asymmetrically deployed actomyosin-based contractility generates a boundary between developing leg segments in Drosophila. Dev Biol 429:165-176
Wingert, Lindsey; DiNardo, Stephen (2015) Traffic jam functions in a branched pathway from Notch activation to niche cell fate. Development 142:2268-77
Lenhart, Kari F; DiNardo, Stephen (2015) Somatic cell encystment promotes abscission in germline stem cells following a regulated block in cytokinesis. Dev Cell 34:192-205
Dinardo, Stephen; Okegbe, Tishina; Wingert, Lindsey et al. (2011) lines and bowl affect the specification of cyst stem cells and niche cells in the Drosophila testis. Development 138:1687-96
Okegbe, Tishina C; DiNardo, Stephen (2011) The endoderm specifies the mesodermal niche for the germline in Drosophila via Delta-Notch signaling. Development 138:1259-67
Zheng, Qi; Wang, Yiwen; Vargas, Eric et al. (2011) magu is required for germline stem cell self-renewal through BMP signaling in the Drosophila testis. Dev Biol 357:202-10
Leatherman, Judith L; Dinardo, Stephen (2010) Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nat Cell Biol 12:806-11
Leatherman, Judith L; Dinardo, Stephen (2008) Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3:44-54
Franklin-Dumont, Tina M; Chatterjee, Chandrima; Wasserman, Steven A et al. (2007) A novel eIF4G homolog, Off-schedule, couples translational control to meiosis and differentiation in Drosophila spermatocytes. Development 134:2851-61
Wallenfang, Matthew R; Nayak, Renuka; DiNardo, Stephen (2006) Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 5:297-304

Showing the most recent 10 out of 14 publications