In bacteria such as Escherichia coli, cytokinesis is orchestrated by two essential and highly conserved cytoskeletal proteins: tubulin-like FtsZ and actin-like FtsA. These proteins coassemble into a circumferential polymeric structure, called the Z ring, on the inner membrane at the site of cell division. Once assembled, the ring then recruits a large complex of other proteins to the membrane, probably distributed in individual subcomplexes. This protein machine, often called the divisome, induces synthesis of septal peptidoglycan while constricting at the leading edge of the growing septum, eventually splitting the cell into two. The machine needs to be robust, yet responsive to a variety of inputs, and is therefore overbuilt. This proposal focuses on FtsA and its interactions with FtsZ and with later divisome proteins, because recent results indicate that FtsA regulates assembly of FtsZ, in addition to its role in tethering FtsZ polymers to the membrane and recruiting later divisome components. We hypothesize that FtsA-mediated recycling of FtsZ polymers increases the number of membrane attachment sites for divisome subcomplexes, which stabilizes the machine and maximizes its flexibility. We propose to (i) elucidate how binding of ATP and ADP stimulates FtsA activity and its interaction with FtsZ;(ii) define the molecular contacts between FtsA and FtsZ subunits within FtsZ polymers;and (iii) understand how the FtsZ/FtsA complex interacts with the later divisome subcomplexes. The study of bacterial cell division is important for two reasons. First, it is a basic cellular process that needs to be understood. Second, with the current scarcity of novel antibiotics, the universal and essential process of bacterial cytokinesis is increasingly relevant as a target of antimicrobial drugs.

Public Health Relevance

This project investigates the molecular mechanism of bacterial cell division. The highly conserved proteins in the cell division apparatus represent novel targets for new therapeutics.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Deatherage, James F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center Houston
Schools of Medicine
United States
Zip Code
Haeusser, Daniel P; Margolin, William (2016) Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol 14:305-19
Farley, Madeline M; Hu, Bo; Margolin, William et al. (2016) Minicells, Back in Fashion. J Bacteriol 198:1186-95
Garcia, Veronica M; Rowlett, Veronica W; Margolin, William et al. (2016) Semi-automated microplate monitoring of protein polymerization and aggregation. Anal Biochem 508:9-11
Hu, Bo; Margolin, William; Molineux, Ian J et al. (2015) Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci U S A 112:E4919-28
Haeusser, Daniel P; Rowlett, Veronica W; Margolin, William (2015) A mutation in Escherichia coli ftsZ bypasses the requirement for the essential division gene zipA and confers resistance to FtsZ assembly inhibitors by stabilizing protofilament bundling. Mol Microbiol 97:988-1005
Rowlett, Veronica W; Margolin, William (2015) The bacterial divisome: ready for its close-up. Philos Trans R Soc Lond B Biol Sci 370:
Hernández-Rocamora, Víctor M; Alfonso, Carlos; Margolin, William et al. (2015) Evidence That Bacteriophage λ Kil Peptide Inhibits Bacterial Cell Division by Disrupting FtsZ Protofilaments and Sequestering Protein Subunits. J Biol Chem 290:20325-35
Busiek, Kimberly K; Margolin, William (2015) Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 25:R243-54
Hu, Bo; Morado, Dustin R; Margolin, William et al. (2015) Visualization of the type III secretion sorting platform of Shigella flexneri. Proc Natl Acad Sci U S A 112:1047-52
Rowlett, Veronica W; Margolin, William (2015) The Min system and other nucleoid-independent regulators of Z ring positioning. Front Microbiol 6:478

Showing the most recent 10 out of 53 publications