The broad goal of this project is to elucidate, in biochemical and cellular terms, a mechanism for regulated protein sorting within the endocytic pathway. The focus of the work in the upcoming funding period is on the export of cargo proteins from endosomes, a poorly characterized set of retrograde transport pathways that sort cargo to the Golgi apparatus. For some nutrient transporters, such as the yeast Fet3/Ftr1 reductive iron transporter, this step constitutes the initial stage of an endocytic recycling pathway that returns them to the plasma membrane for re-use. Model cargo proteins, including nutrient transporters, an acidic hydrolase sorting receptor, and SNARE proteins have been established to investigate these pathways and the genetic requirements for their trafficking have been determined. Proposed experiments will identify the structural features of cargo proteins that are necessary for retrograde sorting, and identify the components of the sorting machinery that recognize these signals. The research will focus on the roles of the retromer cargo sorting complex, an evolutionarily conserved complex of five proteins that are associated with endosome membranes, and sorting nexins, which are proposed to function as cargo receptors in endosome export pathways. Methodologies to be used include genetic analysis of trafficking in yeast mutant strains, kinetic analysis of protein turnover rates, biochemical characterization of interactions between cargo and the sorting machinery and between components of the sorting machinery. The studies will provide key insights into how cargo proteins are recognized in the endosomal system, how recognition is translated into export of cargo from endosomes, and how these molecular interactions are harnessed by the cell to modulate the composition of the plasma membrane.

Public Health Relevance

Many aspects of cell physiology rely directly on the protein and lipid composition of the plasma membrane: nutrient acquisition, cell-cell recognition and signaling, cell-substrate adhesion, and cell motility. The molecular components of the plasma membrane are in a dynamic equilibrium with intracellular endosomes. The proposed studies will investigate mechanisms of protein sorting within endosomes that lead to their recycling back to the plasma membrane.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM061221-13
Application #
8332800
Study Section
Cell Structure and Function (CSF)
Program Officer
Ainsztein, Alexandra M
Project Start
2000-09-01
Project End
2013-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
13
Fiscal Year
2012
Total Cost
$348,970
Indirect Cost
$138,853
Name
Yale University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Zhang, Pengwei; Monteiro da Silva, Gabriel; Deatherage, Catherine et al. (2018) Cell-Penetrating Peptide Mediates Intracellular Membrane Passage of Human Papillomavirus L2 Protein to Trigger Retrograde Trafficking. Cell 174:1465-1476.e13
Deng, Yongqiang; Pakdel, Mehrshad; Blank, Birgit et al. (2018) Activity of the SPCA1 Calcium Pump Couples Sphingomyelin Synthesis to Sorting of Secretory Proteins in the Trans-Golgi Network. Dev Cell 47:464-478.e8
Ma, Mengxiao; Kumar, Santosh; Purushothaman, Latha et al. (2018) Lipid trafficking by yeast Snx4 family SNX-BAR proteins promotes autophagy and vacuole membrane fusion. Mol Biol Cell 29:2190-2200
Cui, Tie-Zhong; Peterson, Tabitha A; Burd, Christopher G (2017) A CDC25 family protein phosphatase gates cargo recognition by the Vps26 retromer subunit. Elife 6:
Ma, Mengxiao; Burd, Christopher G; Chi, Richard J (2017) Distinct complexes of yeast Snx4 family SNX-BARs mediate retrograde trafficking of Snc1 and Atg27. Traffic 18:134-144
Deng, Yongqiang; Rivera-Molina, Felix E; Toomre, Derek K et al. (2016) Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle. Proc Natl Acad Sci U S A 113:6677-82
Popa, Andreea; Zhang, Wei; Harrison, Megan S et al. (2015) Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection. PLoS Pathog 11:e1004699
DiMaio, Daniel; Burd, Christopher G; Goodner, Kylia (2015) Riding the R Train into the Cell. PLoS Pathog 11:e1005036
Chi, Richard J; Harrison, Megan S; Burd, Christopher G (2015) Biogenesis of endosome-derived transport carriers. Cell Mol Life Sci 72:3441-3455
Chi, Richard J; Liu, Jingxuan; West, Matthew et al. (2014) Fission of SNX-BAR-coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1. J Cell Biol 204:793-806

Showing the most recent 10 out of 30 publications