A family of membrane embedded ATP-powered ion pumps, known as Secretory Pathway Ca2+, Mn2+-ATPases (SPCA), is conserved from yeast to human. SPCA pumps supply the Golgi lumen with ions essential for protein processing, sorting and glycosylation reactions. There is emerging evidence that SPCA pumps are also critically important for cytoplasmic Ca2+ signaling events and Mn2+ homeostasis. In this proposal, we will investigate three unique, physiologically distinct and clinically relevant functions of SPCA pumps.
In Aim 1, we will test the hypothesis that SPCA1 contributes to manganese clearance through bile. We will use liver-specific, shRNA mediated knockdown of SPCA1 in a murine model to evaluate a role in manganese detoxification. Using a polarized, hepatocyte derived cell line, we will investigate the role of a novel Golgi Mn2+ sensor in SPCA1 trafficking, and identify molecular determinants for endosomal localization of SPCA1.
In Aim 2, we will determine the mechanism of an unconventional interaction between SPCA2 and the Orai1 ion channel using fluorescence and electrophysiological approaches, as well as an innovative yeast expression strategy. N- and C-terminal SPCA2 domains with dominant negative or constitutively active properties will be evaluated for functional interactions with ion channels.
In Aim 3, we seek to understand the physiological role of pump-channel interactions in eliciting robust calcium influx at the plasma membrane. We will follow up on preliminary studies showing that a calcium handling module of pumps, channels, buffers and sensors, including SPCA2, is coordinately induced upon lactation. A unique, 3-dimensional model of lactating mammary epithelial cells will be used to determine if SPCA2 interacts with and activates Orai channels for effective calcium secretion into milk. We will assess the function of a novel, truncated C-terminal SPCA2 transcript, specifically regulated by MIST1, a bHLH transcription factor that shows overlapping expression with SPCA2. Finally, we will examine how dysregulation of this calcium module in tumor cells contributes to distinct modes of cell proliferation and migration underlying cancer progression.

Public Health Relevance

Calcium and manganese ions are essential for many aspects of biology, and must be regulated tightly to avoid toxicity. Excess manganese must be cleared by the liver to avoid neurotoxicity resembling Parkinson's disease. Unregulated calcium levels result in excessive proliferation associated with tumor growth and metastasis. This study investigates molecular pathways by which these critical ions are transported.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Chin, Jean
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Cross, Brandie M; Breitwieser, Gerda E; Reinhardt, Timothy A et al. (2014) Cellular calcium dynamics in lactation and breast cancer: from physiology to pathology. Am J Physiol Cell Physiol 306:C515-26
Cross, Brandie M; Hack, Anniesha; Reinhardt, Timothy A et al. (2013) SPCA2 regulates Orai1 trafficking and store independent Ca2+ entry in a model of lactation. PLoS One 8:e67348
Feng, Ming-Ye; Rao, Rajini (2013) New insights into store-independent Ca(2+) entry: secretory pathway calcium ATPase 2 in normal physiology and cancer. Int J Oral Sci 5:71-4
Patenaude, Cassandra; Zhang, Yongqiang; Cormack, Brendan et al. (2013) Essential role for vacuolar acidification in Candida albicans virulence. J Biol Chem 288:26256-64
Feng, Mingye; Grice, Desma M; Faddy, Helen M et al. (2010) Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143:84-98
Faddy, Helen M; Smart, Chanel E; Xu, Ren et al. (2008) Localization of plasma membrane and secretory calcium pumps in the mammary gland. Biochem Biophys Res Commun 369:977-81
Yadav, Jyoti; Muend, Sabina; Zhang, Yongqiang et al. (2007) A phenomics approach in yeast links proton and calcium pump function in the Golgi. Mol Biol Cell 18:1480-9
Xiang, Minghui; Mohamalawari, Deepti; Rao, Rajini (2005) A novel isoform of the secretory pathway Ca2+,Mn(2+)-ATPase, hSPCA2, has unusual properties and is expressed in the brain. J Biol Chem 280:11608-14
Gupta, Soma Sen; Ton, Van-Khue; Beaudry, Veronica et al. (2003) Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J Biol Chem 278:28831-9
Mandal, Debjani; Rulli, Samuel J; Rao, Rajini (2003) Packing interactions between transmembrane helices alter ion selectivity of the yeast Golgi Ca2+/Mn2+-ATPase PMR1. J Biol Chem 278:35292-8

Showing the most recent 10 out of 11 publications