This proposal is an extension of an evolving program investigating the importance of pantothenate kinase (PanK) regulation of coenzyme A (CoA) biosynthesis to the control of intermediary metabolism. The accomplished aims of the last grant period defined the regulatory properties and tissue-specific distribution of the PanK isoforms, generated a knockout mouse model that was used to reveal the critical importance of increasing CoA levels in fasting metabolism, employed a chemical biology approach to identify small molecule PanK inhibitors, and identified acyl-carnitine as a PanK activator. These results have refined our overall idea that altering the intracellular CoA concentration is essential for reprogramming metabolism. In the past, intracellular CoA has been considered to be in excess of what is needed to fully support CoA-dependent biochemistry, with acetyl-CoA exerting feedback control over PanK activity to buffer the cellular CoA content. This view is not correct. Our results show that the CoA supply is dynamically regulated and the failure to modulate CoA content directly impacts fuel utilization by the metabolic network. This unappreciated aspect of regulation is central to understanding the nutritional reprogramming of intermediary metabolism. The experiments in Aim #1 will determine the role of adjusting CoA levels in the transition of muscle from fed to fasting metabolism. The results from this part of the study will be of central importance to understanding the dependence of energy generation in muscle on CoA content. In humans, there is an association between low serum insulin levels and polymorphisms in the PANK1 gene. Prominent phenotypes of our Pank1/ knockout mouse are lower serum glucose, triglycerides and insulin levels.
In Aim #2, we will use our Pank1/ mouse model to define the underlying metabolic basis for reduced insulin levels and to determine if muscle is the primary site for increased glucose tolerance in these animals. CoA and its thioesters are concentration- dependent substrates and allosteric regulators of key control points in intermediary metabolism, suggesting that the pharmacological manipulation of CoA levels via PanK inhibition could reprogram metabolism. This idea was validated by our experiments with a PanK inhibitor that lowers hepatic CoA and serum glucose in mice.
In Aim #3, we will use this inhibitor to reduce total CoA content to pharmacologically reprogram hepatic metabolism to suppress gluconeogenesis in diet-induced obesity, and determine if the elevation of hepatic CoA is sufficient to increase glucose production. This original approach to reprogramming intermediary metabolism will define the role of CoA in hepatic gluconeogenesis and provide insight into the factors that give rise to human disorders of lipid and glucose homeostasis.

Public Health Relevance

Obesity-associated insulin resistance and hyperglycemia define a metabolic syndrome (type 2 diabetes) that constitutes a large and ever growing medical problem affecting the United States population. The need for more suitable therapeutics to treat this syndrome has focused considerable attention on clearly understanding the normal regulation of intermediary metabolism and the imbalances associated with metabolic syndrome. This research will define the role of pantothenate kinase and coenzyme A in the regulation of intermediary metabolism and its effect on glucose and insulin homeostasis.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Barski, Oleg
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
St. Jude Children's Research Hospital
United States
Zip Code
Corbin, Deborah R; Rehg, Jerold E; Shepherd, Danielle L et al. (2017) Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2. Mol Genet Metab 120:350-362
Subramanian, Chitra; Yun, Mi-Kyung; Yao, Jiangwei et al. (2016) Allosteric Regulation of Mammalian Pantothenate Kinase. J Biol Chem 291:22302-22314
Sharma, Lalit Kumar; Leonardi, Roberta; Lin, Wenwei et al. (2015) A high-throughput screen reveals new small-molecule activators and inhibitors of pantothenate kinases. J Med Chem 58:1563-8
Zano, Stephen P; Pate, Caroline; Frank, Matthew et al. (2015) Correction of a genetic deficiency in pantothenate kinase 1 using phosphopantothenate replacement therapy. Mol Genet Metab 116:281-8
Shumar, Stephanie A; Fagone, Paolo; Alfonso-Pecchio, Adolfo et al. (2015) Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice. PLoS One 10:e0130013
Jackowski, Suzanne; Leonardi, Roberta (2014) Deregulated coenzyme A, loss of metabolic flexibility and diabetes. Biochem Soc Trans 42:1118-22
Leonardi, Roberta; Rock, Charles O; Jackowski, Suzanne (2014) Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinaemia and modifies global metabolism without affecting insulin resistance. Diabetologia 57:1466-75
Dansie, Lorraine E; Reeves, Stacy; Miller, Karen et al. (2014) Physiological roles of the pantothenate kinases. Biochem Soc Trans 42:1033-6
Fagone, Paolo; Jackowski, Suzanne (2013) Phosphatidylcholine and the CDP-choline cycle. Biochim Biophys Acta 1831:523-32
Jackowski, Suzanne; Rock, Charles O (2013) Preface: phospholipids and phospholipid metabolism. Biochim Biophys Acta 1831:469-70

Showing the most recent 10 out of 38 publications