The vertebrate genome contains a predicted 20,000+ genes, many of unknown biological role(s). In addition, a large fraction of these molecules have distinct functions in diverse processes. The functional annotation of the vertebrate genome is the overarching goal of this long-standing research program. For example, even a decade after the completion of the human genome effort, the diversity of genes undergoing active research has not substantially changed. We developed a collection of gene-break transposon (GBT) alleles for use in phenotypic annotation of the vertebrate genome using the preeminent non-mammalian model organism, the zebrafish (Danio rerio). Why emphasize the proteome? Genomic approaches have robustly characterized the nuclear genome and transcriptome. However, the genomic assessment of the full complexity of the proteome in a dynamic context and in vivo is still largely unknown. The zebrafish provides an opportunity to perform a comprehensive analysis of the entire vertebrate proteome. We will use our ongoing 700+ GBT collection and new, targeted TALEN/CRISPR knockout alleles for assessment of the vertebrate phenome. In this competitive renewal, we will focus on the annotation of biological function to identify new players in development as well as a set of clinically relevant biological processes. We will accomplish this goal through the following specific aims:
Specific Aim I. We will annotate nuclearly encoded mitochondrial genes during vertebrate development using zebrafish.
Specific Aim II. We will annotate novel genes with expression and function in the embryonic and adult skin and will analyze their contribution to organ homeostasis and regenerative potential.
Specific Aim III : We will identify cardiac mutants for annotation of gene modifiers of adult cardiomyopathy.
Specific Aim I V. We will identify digestive organ mutations to characterize a variety of potentially disease-causing mutant lines for alterations in lipid uptake, metabolism, transport and storage. We selected 1) Mitochondrial biology due to the complex role of this organelle in normal biology and disease and the unexpected finding of diverse phenotypes from the first GBT alleles in nuclearly encoded mitochondrial genes embryonic 2) Integument development and function due to the strong impact of skin disease on one in three Americans 3) Cardiac biology and function due to the critical role of heart disease as the leading cause of death in the US and 4) Lipid biology and digestive disease physiology due to their critical role(s) in development, heart disease and obesity. Together, this program will provide new insights into the genetic basis of new vertebrate developmental processes and physiological systems critical for health and that when altered contribute to disease.

Public Health Relevance

This proposal is to phenotypically annotate new vertebrate genes using an ongoing mutant resource of new conditional protein trap mutations for the zebrafish (Danio rerio), the preeminent non-mammalian system for the study of core vertebrate biology and for modeling of human disease. This program will identify new genes involved in mitochondrial biology, skin development including regeneration, development of adult cardiac disease, and lipid biology and digestive disease physiology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM063904-13
Application #
9103268
Study Section
Genomics, Computational Biology and Technology Study Section (GCAT)
Program Officer
Hoodbhoy, Tanya
Project Start
2001-09-01
Project End
2020-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
13
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Pogoda, Hans-Martin; Riedl-Quinkertz, Iris; Löhr, Heiko et al. (2018) Direct activation of chordoblasts by retinoic acid is required for segmented centra mineralization during zebrafish spine development. Development 145:
Richardson, Rebecca; Hammerschmidt, Matthias (2018) The role of Rho kinase (Rock) in re-epithelialization of adult zebrafish skin wounds. Small GTPases 9:230-236
Löhr, Heiko; Hess, Simon; Pereira, Mafalda M A et al. (2018) Diet-Induced Growth Is Regulated via Acquired Leptin Resistance and Engages a Pomc-Somatostatin-Growth Hormone Circuit. Cell Rep 23:1728-1741
Sæle, Øystein; Rød, Kari Elin L; Quinlivan, Vanessa H et al. (2018) A novel system to quantify intestinal lipid digestion and transport. Biochim Biophys Acta Mol Cell Biol Lipids 1863:948-957
Anderson, Jennifer L; Mulligan, Timothy S; Shen, Meng-Chieh et al. (2017) mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay. PLoS Genet 13:e1007105
Wang, Lei; Ma, Xiao; Xu, Xiaolei et al. (2017) Systematic identification and characterization of cardiac long intergenic noncoding RNAs in zebrafish. Sci Rep 7:1250
Stainier, Didier Y R; Raz, Erez; Lawson, Nathan D et al. (2017) Guidelines for morpholino use in zebrafish. PLoS Genet 13:e1007000
El-Rass, Suzan; Eisa-Beygi, Shahram; Khong, Edbert et al. (2017) Disruption ofpdgfraalters endocardial and myocardial fusion during zebrafish cardiac assembly. Biol Open 6:348-357
Otis, Jessica P; Shen, Meng-Chieh; Quinlivan, Vanessa et al. (2017) Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels. Dis Model Mech 10:283-295
Quinlivan, Vanessa H; Wilson, Meredith H; Ruzicka, Josef et al. (2017) An HPLC-CAD/fluorescence lipidomics platform using fluorescent fatty acids as metabolic tracers. J Lipid Res 58:1008-1020

Showing the most recent 10 out of 113 publications