Zinc transporters play a central role in metal metabolism and homeostasis in all living organisms. Our long- term goal is to understand the structure and mechanism of zinc transporters and their functional regulation by metal ions, lipids, and drugs. This is the second competitive renewal of a continuing research project focusing on zinc-efflux transporters from the cation diffusion facilitator (CDF) family. In the current budget period, we solved the crystal structure of YiiP, a prototypic CDF ortholog from E. coli. The crystal structure reveals a Y- shaped architecture that is uniquely oriented in the membrane with an active-site situated near the protein-lipid interface. Despite our existing crystallographic snapshots, a structure-based transport model still is lacking, and the relevance of the YiiP crystal structure to its native structure in the membrane is uncertain. Further, YiiP is a two-modular membrane transporter with a cytoplasmic domain for zinc sensing, and a transmembrane domain that transports zinc ions in response to fluctuation of cytoplasmic zinc concentrations. The conformational changes underlying the allosteric regulation of zinc transport are yet to be explored. In the next budget period, we will use a combination of low-resolution biochemical techniques and high-resolution crystallographic analysis to address three questions: (i) how does YiiP move a cytoplasmic zinc ion across the membrane barrier, (ii) how is the active-site reshaped by surrounding lipids, and, (iii) how do conformational changes in YiiP enable a regulated zinc-transport activity tunable to the cytoplasmic zinc concentration? Accordingly, we propose three specific aims: (i) developing a mechanistic model for zinc transport, (ii) evaluating YiiP conformations in the membrane, and, (iii) defining the YiiP structure in action. During the past two budget cycles, we have developed functional assays for zinc transport with millisecond time-resolution, and obtained structural information on a CDF ortholog at atomic resolution. In the next budget period, we will explore the inner workings of CDFs in atomic detail (aim-1), in native membrane environments (aim-2), and in action (aim-3).

Public Health Relevance

Zinc efflux transporters in the cation diffusion facilitator (CDF) family are important molecular markers and active drug targets for diabetes and Alzheimer's disease. The fundamental knowledge gained through the proposed structure-function study will illuminate the functional consequences of human CDF polymorphisms, thereby providing the basis for disease-risk assessment by genetic screening. Further, homology modeling of human CDF orthologs will be instrumental to structure-guided drug discovery efforts.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
7R01GM065137-12
Application #
8450117
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Chin, Jean
Project Start
2002-04-01
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
12
Fiscal Year
2013
Total Cost
$309,200
Indirect Cost
$118,336
Name
Johns Hopkins University
Department
Physiology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Merriman, Chengfeng; Huang, Qiong; Gu, Wei et al. (2018) A subclass of serum anti-ZnT8 antibodies directed to the surface of live pancreatic ?-cells. J Biol Chem 293:579-587
Merriman, Chengfeng; Li, Hua; Li, Huilin et al. (2018) Highly specific monoclonal antibodies for allosteric inhibition and immunodetection of the human pancreatic zinc transporter ZnT8. J Biol Chem 293:16206-16216
Wan, Hao; Merriman, Chengfeng; Atkinson, Mark A et al. (2017) Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform. Proc Natl Acad Sci U S A 114:10196-10201
Huang, Qiong; Merriman, Chengfeng; Zhang, Hao et al. (2017) Coupling of Insulin Secretion and Display of a Granule-resident Zinc Transporter ZnT8 on the Surface of Pancreatic Beta Cells. J Biol Chem 292:4034-4043
Merriman, Chengfeng; Huang, Qiong; Rutter, Guy A et al. (2016) Lipid-tuned Zinc Transport Activity of Human ZnT8 Protein Correlates with Risk for Type-2 Diabetes. J Biol Chem 291:26950-26957
Fu, Dax; Finney, Lydia (2014) Metalloproteomics: challenges and prospective for clinical research applications. Expert Rev Proteomics 11:13-9
Gupta, Sayan; Chai, Jin; Cheng, Jie et al. (2014) Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport. Nature 512:101-4
Hoch, Eitan; Lin, Wei; Chai, Jin et al. (2012) Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc Natl Acad Sci U S A 109:7202-7
Lin, Wei; Chai, Jin; Love, James et al. (2010) Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB. J Biol Chem 285:39013-20
Lu, Min; Chai, Jin; Fu, Dax (2009) Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Mol Biol 16:1063-7

Showing the most recent 10 out of 19 publications