The long-term goal of this competing renewal application is to elucidate the molecular basis underlying cell- extracellular matrix (ECM) adhesion and regulation, and the mechanism whereby they control cell behavior, tissue integrity, growth and regeneration. Recent studies by the applicant and others have demonstrated a critical role of kindlin-2 (also known as Mig-2), a widely expressed membrane-cytoskeleton junctional protein, in integrin activation and cell-ECM adhesion. How kindlin-2 regulates these processes, however, is not known. Based on findings obtained during previous project periods, the applicant hypothesizes that kindlin-2 regulates these processes through interacting with membrane lipids and protein components of cell-ECM adhesions. To test this hypothesis, he proposes studies with the following three aims.
Aim 1 is to characterize the interaction of kindlin-2 with membrane lipids and assess its role in regulation of integrins and integrin-dependent processes. To this end, he will employ genetic, pharmacological and dominant negative inhibition strategies to ablate this interaction, and determine the consequences.
Aim 2 is to determine the functions of kindlin-2 interactions with focal adhesion proteins in regulation of cell-ECM adhesion. He will define the sites mediating the interactions and use a "knock-in" strategy to replace wild type kindlin-2 with mutants lacking specific protein-binding activity and determine the consequences.
Aim 3 is to investigate the functions of kindlin-2 and its interplay with ILK in liver structure, growth and regeneration, which are known to be regulated by ECM adhesion and ILK signaling. He will generate hepatocyte-specific kindlin-2 knockout and "knock-in" mice, in which wild type kindlin-2 is substituted with kindlin-2 mutants lacking specific binding activities, and determine contributions of kindlin-2 and its interactions to regulation of hepatocyte behavior, liver structure, growth and regeneration. These studies will fill important gaps in our understanding of the mechanism whereby cell-ECM adhesion and ECM-dependent tissue processes are regulated. Given the importance of cell-ECM adhesion in human diseases, these studies may also lead to novel approaches to control diseases associated with abnormal cell-ECM adhesion and signaling.

Public Health Relevance

Alteration of cell-ECM adhesion is critically involved in the pathogenesis of human diseases including cancer. This project seeks to determine how a recently identified regulator of cell-ECM adhesion influences cell-ECM adhesion, tissue structure, growth and regeneration. These studies may lead to identification of novel therapeutic targets to control diseases associated with abnormal cell-ECM adhesion and growth.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM065188-11
Application #
8387770
Study Section
Intercellular Interactions (ICI)
Program Officer
Nie, Zhongzhen
Project Start
2002-05-01
Project End
2014-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
11
Fiscal Year
2013
Total Cost
$302,897
Indirect Cost
$77,332
Name
University of Pittsburgh
Department
Pathology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Liu, Z; Zhan, Y; Tu, Y et al. (2015) PDZ and LIM domain protein 1(PDLIM1)/CLP36 promotes breast cancer cell migration, invasion and metastasis through interaction with ?-actinin. Oncogene 34:1300-11
Qu, Hong; Tu, Yizeng; Guan, Jun-Lin et al. (2014) Kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch in the integrin outside-in signaling circuit. J Biol Chem 289:31001-13
Song, Chenlin; Zhu, Songcheng; Wu, Chuanyue et al. (2013) Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J Biol Chem 288:28021-33
Gkretsi, Vasiliki; Papanikolaou, Vassilis; Dubos, Stephanie et al. (2013) Migfilin's elimination from osteoarthritic chondrocytes further promotes the osteoarthritic phenotype via ?-catenin upregulation. Biochem Biophys Res Commun 430:494-9
Davidson, Ben; Holth, Arild; Nguyen, Mai T P et al. (2013) Migfilin, ýý-parvin and ýý-parvin are differentially expressed in ovarian serous carcinoma effusions, primary tumors and solid metastases. Gynecol Oncol 128:364-70
Liu, Jianmin; Fukuda, Koichi; Xu, Zhen et al. (2011) Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J Biol Chem 286:43334-42
Qu, Hong; Tu, Yizeng; Shi, Xiaohua et al. (2011) Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J Cell Sci 124:879-91
Yuan, Y; Dong, H P; Nymoen, D A et al. (2011) PINCH-2 expression in cancers involving serosal effusions using quantitative PCR. Cytopathology 22:22-9
Shao, Hanshuang; Wu, Chuanyue; Wells, Alan (2010) Phosphorylation of alpha-actinin 4 upon epidermal growth factor exposure regulates its interaction with actin. J Biol Chem 285:2591-600
Yang, Yanwu; Wang, Xiaoxia; Hawkins, Cheryl A et al. (2009) Structural basis of focal adhesion localization of LIM-only adaptor PINCH by integrin-linked kinase. J Biol Chem 284:5836-44

Showing the most recent 10 out of 60 publications