The incidence of asthma is increasing worldwide with a 250% increase in the US over the past 20 years. In 2001 the NIH estimated that 17 million Americans suffer from asthma and 12.1 million from COPD. An increasing number of patients with these diseases require anesthesia and bronchospasm especially during induction and emergence from anesthesia carries significant morbidity. A better understanding of therapies that minimize bronchospasm during anesthesia will make anesthetic care safer for a growing number of patients with asthma and COPD. Intubation of the trachea during induction or the presence of an endotracheal tube during emergence from anesthesia initiates a neurally-mediated irritant reflex in the airway promoting bronchoconstriction. Neural control of airway tone is modulated by both cholinergic nerves traveling within the vagus nerve and by nocioceptive C fibers that send afferent signals to the CMS that modulate cholinergic outflow and locally release tachykinins into the airway wall. In brain, tachykinins release v-amino butyric acid (GABA), the primary neuronal inhibitory neurotransmitter. The cholinergic component of this reflex has been extensively explored in animal models and humans but little is known regarding the contribution of C fibers, released tachykinins or GABA to reflex-induced bronchoconstriction. Propofol is known to allosterically enhance the activity of GABA at GABAA receptors in the brain and is recognized as the intravenous anesthetic induction agent of choice in patients at risk for bronchospasm but its mechanism of airway protection is poorly understood. Elucidating the mechanisms of propofol's protective airway effects may provide novel therapies for bronchoconstriction from many causes. Exciting preliminary data demonstrate that [1] GABA is locally present near airway smooth muscle, [2] airway smooth muscle expresses GABAA receptors, [3] GABAA agonists relax airway smooth muscle and [4] propofol selectively attenuates NK2-mediated airway constriction via GABAA receptors. Based on these preliminary data we hypothesize that airway irritation releases tachykinins which activate NK2 receptors on airway nerves to release GABA which allows for the allosteric potentiation at airway smooth muscle GABAA receptors by propofol to facilitate relaxation.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM065281-08
Application #
7857898
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Cole, Alison E
Project Start
2002-04-01
Project End
2011-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
8
Fiscal Year
2010
Total Cost
$326,750
Indirect Cost
Name
Columbia University (N.Y.)
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Mikami, Maya; Perez-Zoghbi, Jose F; Zhang, Yi et al. (2018) Attenuation of Murine and Human Airway Contraction by a Peptide Fragment of the Cytoskeleton Regulatory Protein Gelsolin. Am J Physiol Lung Cell Mol Physiol :
Forkuo, Gloria S; Nieman, Amanda N; Kodali, Revathi et al. (2018) A Novel Orally Available Asthma Drug Candidate That Reduces Smooth Muscle Constriction and Inflammation by Targeting GABAA Receptors in the Lung. Mol Pharm 15:1766-1777
Matoba, Atsuko; Matsuyama, Nao; Shibata, Sumire et al. (2018) The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways. Am J Physiol Lung Cell Mol Physiol 314:L333-L348
Matsuyama, Nao; Shibata, Sumire; Matoba, Atsuko et al. (2018) The dopamine D1 receptor is expressed and induces CREB phosphorylation and MUC5AC expression in human airway epithelium. Respir Res 19:53
Mikami, Maya; Zhang, Yi; Kim, Benjamin et al. (2017) Dexmedetomidine's inhibitory effects on acetylcholine release from cholinergic nerves in guinea pig trachea: a mechanism that accounts for its clinical benefit during airway irritation. BMC Anesthesiol 17:52
Yocum, Gene T; Turner, Damian L; Danielsson, Jennifer et al. (2017) GABAA receptor ?4-subunit knockout enhances lung inflammation and airway reactivity in a murine asthma model. Am J Physiol Lung Cell Mol Physiol 313:L406-L415
Forkuo, Gloria S; Nieman, Amanda N; Yuan, Nina Y et al. (2017) Alleviation of Multiple Asthmatic Pathologic Features with Orally Available and Subtype Selective GABAA Receptor Modulators. Mol Pharm 14:2088-2098
Jahan, Rajwana; Stephen, Michael Rajesh; Forkuo, Gloria S et al. (2017) Optimization of substituted imidazobenzodiazepines as novel asthma treatments. Eur J Med Chem 126:550-560
Ling, Yuye; Yao, Xinwen; Gamm, Ute A et al. (2017) Ex vivo visualization of human ciliated epithelium and quantitative analysis of induced flow dynamics by using optical coherence tomography. Lasers Surg Med 49:270-279
Mikami, Maya; Zhang, Yi; Danielsson, Jennifer et al. (2017) Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin. Am J Respir Cell Mol Biol 56:628-636

Showing the most recent 10 out of 49 publications