The highly conserved, ATP-independent chaperone Hsp33 specifically protects bacteria against oxidative stress conditions that lead to protein unfolding. We found that Hsp33 uses the oxidation status of four cysteine residues to control its chaperone activity, making Hsp33 the first redox-regulated chaperone known. By studying the mechanism of Hsp33 action, we realized that activation of Hsp33 involves large-scale conformational rearrangements in the chaperone, essentially converting the complete C-terminal redox switch domain of Hsp33 into an intrinsically disordered protein. Intriguingly, stress-specific activation by partial unfolding has been recently reported for other energy-independent chaperones as well, suggesting that this mechanism may represent a new paradigm in the field of chaperones and intrinsically disordered proteins. We will now combine mutational, biochemical, and structural tools to elucidate the precise working mechanism of Hsp33 with the goal of determining the role that intrinsic disorder plays in chaperone function. Our proposed studies will test a model in which intrinsically disordered chaperones, like Hsp33, utilize fully reversible order to- disorder transitions to control substrate binding and release. I collaboration with Dr. Lewis Kay we will make use of Hsp33's relatively small size, its ability to form very stable complexes with well-characterized substrate proteins and its amenability to NMR, to monitor, at atomic resolution, how intrinsically disordered chaperones interact with substrate proteins to facilitate their refolding. In addition, we will follow up on our recent discovery that Hsp33 not only protects bacteria against the potent antimicrobial hypochlorous acid (i.e., bleach) but also dramatically increases bacterial resistance to bile salts, the first ine of defense used to limit bacterial colonization in the mammalian intestine. Our proposed studies will unravel the mechanism by which these antimicrobials affect bacteria and the protective role that Hsp33 plays in this process. In summary, our studies will provide an important opportunity to understand, in molecular detail, how chaperones like Hsp33 select, bind and impact their substrate proteins. Together with the analysis of Hsp33's role in bleach and bile salt resistance, these results will facilitate the development of novel antimicrobial strategies.

Public Health Relevance

The mammalian host defense produces high levels of oxidants, such as bleach, to kill off invading microorganism. Bacteria defend themselves by using the redox-regulated chaperone Hsp33, which, specifically activated by the presence of these oxidants, protects bacterial proteins against stress-induced unfolding and enhances bacterial stress resistance. We will now elucidate the mechanisms by which Hsp33 binds proteins under oxidative stress conditions, and releases them for efficient refolding once non-stress conditions are restored.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM065318-11
Application #
8546391
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Wehrle, Janna P
Project Start
2003-02-01
Project End
2016-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
11
Fiscal Year
2013
Total Cost
$335,510
Indirect Cost
$106,310
Name
University of Michigan Ann Arbor
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Groitl, Bastian; Jakob, Ursula (2014) Thiol-based redox switches. Biochim Biophys Acta 1844:1335-43
Voth, Wilhelm; Schick, Markus; Gates, Stephanie et al. (2014) The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Mol Cell 56:116-27
Gray, Michael J; Wholey, Wei-Yun; Wagner, Nico O et al. (2014) Polyphosphate is a primordial chaperone. Mol Cell 53:689-99
Cremers, Claudia M; Knoefler, Daniela; Vitvitsky, Victor et al. (2014) Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo. Proc Natl Acad Sci U S A 111:E1610-9
Knoefler, Daniela; Leichert, Lars I O; Thamsen, Maike et al. (2014) About the dangers, costs and benefits of living an aerobic lifestyle. Biochem Soc Trans 42:917-21
Jakob, Ursula; Kriwacki, Richard; Uversky, Vladimir N (2014) Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 114:6779-805
Parker, Benjamin W; Schwessinger, Emily A; Jakob, Ursula et al. (2013) The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. J Biol Chem 288:32574-84
Müller, Alexandra; Hoffmann, Jörg H; Meyer, Helmut E et al. (2013) Nonnative disulfide bond formation activates the ?32-dependent heat shock response in Escherichia coli. J Bacteriol 195:2807-16
Winther, Jakob R; Jakob, Ursula (2013) Redox control: A black hole for oxidized glutathione. Nat Chem Biol 9:69-70
Gray, Michael J; Wholey, Wei-Yun; Parker, Benjamin W et al. (2013) NemR is a bleach-sensing transcription factor. J Biol Chem 288:13789-98

Showing the most recent 10 out of 38 publications