Every day, most organisms are exposed to dramatic changes in the physical and ecological properties of their environment. They rely on circadian clocks to meet these challenges. These time-keeping mechanisms have a profound effect on behavior, physiology, gene expression and cell biochemistry. A fundamental property of circadian clocks is their self-sustained nature: they function even when an organism is exposed to constant conditions. However, circadian clocks only approximate day length, and therefore need to be reset every day to be beneficial. Light is arguably the most important input for circadian clocks. We therefore study in Drosophila the neuronal and molecular mechanisms underlying circadian photoreception. In the previous period of funding, we have identified novel circadian neurons and genes that modulate circadian behavior and photoresponses.
Our first aim will determine how specific groups of circadian neurons interact to synchronize circadian behavior with the light/dark cycle.
Our second aim will determine the function of the chromatin- remodeling factor KISMET in the modulation of circadian light responses.
Our third aim will study how the c- FOS homolog KAY influences circadian behavior and photoresponses. We anticipate that our work will identify general principles underlying the synchronization of circadian rhythms in animals. Indeed, it has recently been appreciated that in mammals also, synchronization of circadian rhythms depends both on cell-autonomous pathways resetting the molecular pacemaker and on interactions between circadian neurons. Our studies should therefore contribute to understand the biological bases of diseases and ailments associated with the dysfunction of circadian rhythms, such as those found in shift workers, and patients affected with specific sleep and mood disorders.

Public Health Relevance

Circadian clocks give an innate sense of time to most animals. These 24-hr period time-keeping mechanisms need to be reset daily to remain properly synchronized with the day/night cycle. Light is the most important environmental cue that can synchronize circadian clocks. We will therefore study the neuronal and molecular mechanisms underlying circadian photoreception in the model organism Drosophila melanogaster. The principles of circadian clock function and synchronization are remarkably similar in Drosophila and mammals. Our work may thus ultimately help understanding the biological bases of human diseases such as mood and sleep disorders, which are associated with the dysfunction and abnormal synchronization of circadian rhythms.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM066777-09
Application #
8289498
Study Section
Biological Rhythms and Sleep Study Section (BRS)
Program Officer
Sesma, Michael A
Project Start
2004-01-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2014-06-30
Support Year
9
Fiscal Year
2012
Total Cost
$322,453
Indirect Cost
$126,433
Name
University of Massachusetts Medical School Worcester
Department
Biology
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Lamba, Pallavi; Bilodeau-Wentworth, Diana; Emery, Patrick et al. (2014) Morning and evening oscillators cooperate to reset circadian behavior in response to light input. Cell Rep 7:601-8
Tataroglu, Ozgur; Emery, Patrick (2014) Studying circadian rhythms in Drosophila melanogaster. Methods 68:140-50
Zhang, Yong; Emery, Patrick (2013) GW182 controls Drosophila circadian behavior and PDF-receptor signaling. Neuron 78:152-65
Zhang, Yong; Ling, Jinli; Yuan, Chunyan et al. (2013) A role for Drosophila ATX2 in activation of PER translation and circadian behavior. Science 340:879-82
Karpowicz, Phillip; Zhang, Yong; Hogenesch, John B et al. (2013) The circadian clock gates the intestinal stem cell regenerative state. Cell Rep 3:996-1004
Zhang, Yong; Liu, Yixiao; Bilodeau-Wentworth, Diana et al. (2010) Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior. Curr Biol 20:600-5
Dubruille, Raphaelle; Murad, Alejandro; Rosbash, Michael et al. (2009) A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses. PLoS Genet 5:e1000787
Dubruille, Raphaelle; Emery, Patrick (2008) A plastic clock: how circadian rhythms respond to environmental cues in Drosophila. Mol Neurobiol 38:129-45
Zhu, Haisun; Sauman, Ivo; Yuan, Quan et al. (2008) Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol 6:e4
Murad, Alejandro; Emery-Le, Myai; Emery, Patrick (2007) A subset of dorsal neurons modulates circadian behavior and light responses in Drosophila. Neuron 53:689-701

Showing the most recent 10 out of 15 publications