Infections with the human immunodeficiency virus (HIV-1) and hepatitis C virus (HCV) are among the most significant causes of human morbidity and mortality. Worldwide, there are more than 40 million (HIV-1) and 170 million (HCV) people infected with these viruses. In the United States, 0.6% (HIV-1) and 1.7% (HCV) of the population is infected. More than 25% of those infected with HIV are co-infected with HCV (up to 90% of i.v. drug users). Despite the success of highly active anti-retroviral therapy, there remains a need to develop additional drugs targeted to novel receptors that will ensure different susceptibilities to the development of resistance compared to protease and reverse transcriptase, the principal receptors of current drugs. In contrast, current therapies for HCV are wholly inadequate, and multiple first-generation drugs are needed. Resistance is quickly developed to drugs patterned after those effective against HIV-1. The genomes of both HIV-1 and HCV encode a viroporins, a small membrane protein with ion channel activity involved in the production of new virus particles in infected cells. We propose to take a structural approach to the design of drugs directed against these viroporins. This is technically challenging research because viroporins reside in cell membranes, and one of the most important things we have learned from our studies of membrane proteins is that they are distorted by membrane mimics, such as organic solvents and detergent micelles, and must be studies in their native phospholipid bilayer environment under physiological conditions. As part of this research we have developed a general NMR method for determining the structures of membrane proteins in phospholipid bilayers, and will apply it to these viroporins. Determining the native structures of Vpu (Virus protein "u") from HIV-1 and the p7 protein from HCV are essential in order to understand the molecular mechanism of their biological activities and to accelerate the discovery of drugs that interfere with the activities that contribute to the infectivity of the virses. Because we express these proteins and domains of their cellular partners in bacteria, we have a great deal of flexibility in the design of experiments to characterize their interactions with both drugs and proteins.

Public Health Relevance

Most diseases that afflict humans can be treated or cured with drugs. The majority of therapeutic drugs are chemicals targeted to protein receptors that reside in cell membranes. This research is designed to utilize structural information on the viroporins Vpu from HIV-1 and p7 from HCV to accelerate the discovery of drugs that interfere with their functions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM066978-10S1
Application #
8930354
Study Section
Special Emphasis Panel (ZRG1-BCMB-B (02))
Program Officer
Sakalian, Michael
Project Start
2003-07-01
Project End
2017-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
10
Fiscal Year
2014
Total Cost
$45,587
Indirect Cost
Name
University of California San Diego
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Das, Bibhuti B; Opella, Stanley J (2016) Simultaneous cross polarization to (13)C and (15)N with (1)H detection at 60kHz MAS solid-state NMR. J Magn Reson 262:20-6
Zhang, Hua; Lin, Eugene C; Das, Bibhuti B et al. (2015) Structural determination of virus protein U from HIV-1 by NMR in membrane environments. Biochim Biophys Acta 1848:3007-18
Opella, Stanley J (2015) Solid-state NMR and membrane proteins. J Magn Reson 253:129-37
Opella, Stanley J (2015) Relating structure and function of viral membrane-spanning miniproteins. Curr Opin Virol 12:121-5
Lewinski, Mary K; Jafari, Moein; Zhang, Hua et al. (2015) Membrane Anchoring by a C-terminal Tryptophan Enables HIV-1 Vpu to Displace Bone Marrow Stromal Antigen 2 (BST2) from Sites of Viral Assembly. J Biol Chem 290:10919-33
Das, Bibhuti B; Park, Sang Ho; Opella, Stanley J (2015) Membrane protein structure from rotational diffusion. Biochim Biophys Acta 1848:229-45
Park, Sang Ho; Wang, Vivian S; Radoicic, Jasmina et al. (2015) Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA). J Biomol NMR 61:185-96
Perrin Jr, B Scott; Tian, Ye; Fu, Riqiang et al. (2014) High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion. J Am Chem Soc 136:3491-504
Nguyen, Chi; Haushalter, Robert W; Lee, D John et al. (2014) Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. Nature 505:427-31
Radoicic, Jasmina; Lu, George J; Opella, Stanley J (2014) NMR structures of membrane proteins in phospholipid bilayers. Q Rev Biophys 47:249-83

Showing the most recent 10 out of 58 publications