Recognition of ligand by the a? T cell receptor (TCR) is required for the development and maintenance of the T cell repertoire and the initiation and propagation of a cellular immune response. A defining feature of TCRs is their dual capacity for specificity and cross-reactivity. Structural, biophysical, and immunological data continue to provide insight into how TCRs achieve this duality. Yet key questions remain, and a number of hypotheses and generalizations are unproven or untested. The work in this competitive renewal will study the physical bases for TCR specificity and cross-reactivity, focusing on three closely related topics: the dynamics of TCR CDR loops, the mechanisms by which TCRs engage pMHC, and the distribution of binding energy within TCR- pMHC interfaces. Dynamics will be assayed through the use of NMR, time resolved fluorescence anisotropy, and computational simulations, obtaining for the first time clear measurements of TCR loop dynamics across biologically relevant timescales. Measurements of dynamics will be related to TCR specificity and cross- reactivity. Studies of TCR engagement of ligand will be performed with stopped-flow steady-state fluorescence anisotropy, which unlike surface plasmon resonance will allow a rigorous assessment of binding mechanisms (e.g., rigid body, induced fit, or pre-equilibrium conformational ensembles). Again, mechanisms will be related to specificity and cross-reactivity, and considered in the context of popular binding models. In examining the distribution of binding energy, double mutant cycles, an approach commonly used in other fields to asses regional contributions to binding but yet to be applied to TCR-pMHC interactions, will be used. Double mutant cycles will address the relative contributions of various regions within TCR-pMHC interfaces (i.e., the CDR loops, peptide, and MHC helices), as well as examine the extent to which different regions contribute independently of each other. Multiple TCR-pMHC systems will be studied, including cross-reactive interactions, interactions with tight and loose fine specificity, and interactions that proceed with differing degrees of conformational changes and binding topologies. Overall, several outstanding questions regarding TCR recognition of pMHC will be addressed, with the overall aim of clarifying how TCRs achieve their remarkable molecular recognition properties. The results obtained will further the understanding of the normal and abnormal functioning of the human immune system and help in the discovery and design of novel therapeutics based on cellular immunity. Public Health Relevance: A poorly understood feature of T cell receptors of the cellular immune system is their dual capacity for specificity and cross-reactivity. A detailed biophysical study to help understand this duality will be performed, the results of which will contribute not only to the understanding of the normal and abnormal functioning of the human immune system, but also to efforts to discover and design immunologically-based diagnostics and therapeutics.

Public Health Relevance

/ Relevance A poorly understood feature of T cell receptors of the cellular immune system is their dual capacity for specificity and cross-reactivity. A detailed biophysical study to help understand this duality will be performed, the results of which will contribute not only to the understanding of the normal and abnormal functioning of the human immune system, but also to efforts to discover and design immunologically-based diagnostics and therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM067079-09
Application #
8223278
Study Section
Cellular and Molecular Immunology - A Study Section (CMIA)
Program Officer
Marino, Pamela
Project Start
2003-02-01
Project End
2015-01-31
Budget Start
2012-02-01
Budget End
2015-01-31
Support Year
9
Fiscal Year
2012
Total Cost
$273,742
Indirect Cost
$88,503
Name
University of Notre Dame
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
824910376
City
Notre Dame
State
IN
Country
United States
Zip Code
46556
Hawse, William F; De, Soumya; Greenwood, Alex I et al. (2014) TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility. J Immunol 192:2885-91
Duan, Fei; Duitama, Jorge; Al Seesi, Sahar et al. (2014) Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 211:2231-48
Motozono, Chihiro; Kuse, Nozomi; Sun, Xiaoming et al. (2014) Molecular basis of a dominant T cell response to an HIV reverse transcriptase 8-mer epitope presented by the protective allele HLA-B*51:01. J Immunol 192:3428-34
Pierce, Brian G; Hellman, Lance M; Hossain, Moushumi et al. (2014) Computational design of the affinity and specificity of a therapeutic T cell receptor. PLoS Comput Biol 10:e1003478
Nurhonen, Markku; Auranen, Kari (2014) Optimal serotype compositions for Pneumococcal conjugate vaccination under serotype replacement. PLoS Comput Biol 10:e1003477
Smith, Sheena N; Wang, Yuhang; Baylon, Javier L et al. (2014) Changing the peptide specificity of a human T-cell receptor by directed evolution. Nat Commun 5:5223
Hawse, William F; Gloor, Brian E; Ayres, Cory M et al. (2013) Peptide modulation of class I major histocompatibility complex protein molecular flexibility and the implications for immune recognition. J Biol Chem 288:24372-81
Piepenbrink, Kurt H; Blevins, Sydney J; Scott, Daniel R et al. (2013) The basis for limited specificity and MHC restriction in a T cell receptor interface. Nat Commun 4:1948
Smith, Sheena N; Sommermeyer, Daniel; Piepenbrink, Kurt H et al. (2013) Plasticity in the contribution of T cell receptor variable region residues to binding of peptide-HLA-A2 complexes. J Mol Biol 425:4496-507
Madura, Florian; Rizkallah, Pierre J; Miles, Kim M et al. (2013) T-cell receptor specificity maintained by altered thermodynamics. J Biol Chem 288:18766-75

Showing the most recent 10 out of 28 publications