Sepsis is a systemic response to infection characterized by hemodynamic and metabolic derangements that result in shock, multiple organ system failure and death. The incidence and mortality is disproportionately increased in elderly patients, whose treatment represents a major clinical challenge. Thus, the investigation of the molecular mechanisms underlying the age-dependent susceptibility to sepsis is of utmost importance. Scientific evidence suggests that profound changes in mitochondrial function and bioenergetics play a role in the disease process. Accumulation of dysfunctional mitochondria may further increase oxidative stress and cell death. During the past funding cycle, we have demonstrated that the age-dependent susceptibility to sepsis is associated with a marked dysfunction of the nuclear hormone receptors, peroxisome proliferator-activated receptor-? (PPAR?), PPAR?, and liver X receptor-? (LXR?), well-known regulators of metabolic and anti- inflammatory cellular responses. In new preliminary studies, we have observed that mitochondrial complex I function is impaired in liver of old mice (11-12 months of age) when compared to young animals (2-3 months of age) during sepsis. This event in old mice is associated with reduced expression of LC3 II, a marker of autophagy, an important process that enables the cells to dispose defective mitochondria. We also have found that liver of old mice exhibits reduced nuclear expression of the PPAR? coactivator 1-? (PGC-1?), the master regulator of mitochondrial biogenesis, and reduced activation of AMP-activated protein kinase (AMPK), a crucial energy status sensor, which is known to activate PGC-1? and negatively regulate the autophagy controller, the mammalian target of rapamycin complex 1 (mTORC1). Interestingly, treatment with an AMPK activator was able to ameliorate liver function and improve early survival rate in septic old mice. Thus, these preliminary data raise the novel hypothesis that an age-related dysregulation of AMPK may lead to a vicious cycle of impaired autophagy and mitochondrial biogenesis, thus enhancing susceptibility to sepsis and impairing organ recovery.
Three specific aims are proposed to validate this novel concept.
In aim 1 we will investigate the changes of autophagy and mitochondrial biogenesis and their correlation with AMPK activation from infancy through senescence in polymicrobial sepsis in mice. With pharmacological gain-of-function and genetic loss-of-function studies, in aim 2 we will establish the precise role of AMPK in modulating autophagy and mitochondrial biogenesis through the downstream mTORC1 and PGC-1? pathways. Pharmacological studies will also establish whether AMPK activators mitigate sepsis-induced systemic inflammatory response, multiple organ failure and death. With in vitro studies in primary hepatocytes and myocytes from young or old mice, in aim 3 we will test the hypothesis that AMPK also affects the nuclear function of PPAR?, PPAR? and LXR?, which then contribute to the mechanisms of autophagy and mitochondrial biogenesis. These studies may have an impact in developing novel therapies to decrease sepsis morbidity and mortality.

Public Health Relevance

Sepsis is the leading cause of mortality in non-cardiac intensive care units with estimates of over 215,000 deaths in the United States each year. Elderly patients have poor outcomes when compared with young patients. Our project is aimed to understand the molecular mechanisms that regulate the reparative capacity of organ function during aging and sepsis. We will focus on autophagy, a process that allows the cell to dispose dysfunctional organelles, and mitochondria biogenesis, a process that allows the cell to restore functional organelles. The contribution of these reparative processes will be examined in an experimental model of sepsis using genetically altered mice as well as drug interventions directed at a specific protein, the AMP activated kinase, which is thought to be involved in the regulation of these processes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM067202-10
Application #
8545864
Study Section
Special Emphasis Panel (ZRG1-SBIB-W (02))
Program Officer
Dunsmore, Sarah
Project Start
2003-07-01
Project End
2016-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
10
Fiscal Year
2013
Total Cost
$356,409
Indirect Cost
$111,037
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Slinko, Siarhei; Piraino, Giovanna; Hake, Paul W et al. (2014) Combined zinc supplementation with proinsulin C-peptide treatment decreases the inflammatory response and mortality in murine polymicrobial sepsis. Shock 41:292-300
Hobson, Michael J; Hake, Paul W; O'Connor, Michael et al. (2014) Conditional deletion of cardiomyocyte peroxisome proliferator-activated receptor ? enhances myocardial ischemia-reperfusion injury in mice. Shock 41:40-7
Fan, Hongkuan; Goodwin, Andrew J; Chang, Eugene et al. (2014) Endothelial progenitor cells and a stromal cell-derived factor-1? analogue synergistically improve survival in sepsis. Am J Respir Crit Care Med 189:1509-19
Samraj, Ravi S; Zingarelli, Basilia; Wong, Hector R (2013) Role of biomarkers in sepsis care. Shock 40:358-65
Standage, Stephen W; Caldwell, Charles C; Zingarelli, Basilia et al. (2012) Reduced peroxisome proliferator-activated receptor ? expression is associated with decreased survival and increased tissue bacterial load in sepsis. Shock 37:164-9
Solan, Patrick D; Dunsmore, Katherine E; Denenberg, Alvin G et al. (2012) A novel role for matrix metalloproteinase-8 in sepsis. Crit Care Med 40:379-87
Kaplan, Jennifer M; Nowell, Marchele; Lahni, Patrick et al. (2012) Short-term high fat feeding increases organ injury and mortality after polymicrobial sepsis. Obesity (Silver Spring) 20:1995-2002
Fan, Hongkuan; Li, Pengfei; Zingarelli, Basilia et al. (2011) Heterotrimeric G?(i) proteins are regulated by lipopolysaccharide and are anti-inflammatory in endotoxemia and polymicrobial sepsis. Biochim Biophys Acta 1813:466-72
Kaplan, Jennifer M; Zingarelli, Basilia (2011) Novel Therapeutic Agents in Pediatric Sepsis: Peroxisome Proliferator Receptor ? (PPAR ?) Agonists. Open Inflamm J 4:120-124
Kaplan, Jennifer M; Hake, Paul W; Denenberg, Alvin et al. (2010) Phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 Is associated with the downregulation of peroxisome proliferator-activated receptor (PPAR)-ýý during polymicrobial sepsis. Mol Med 16:491-7

Showing the most recent 10 out of 32 publications