Messenger RNA localization plays a key role in creating the asymmetric distributions of proteins necessary for cellular and developmental polarity. The sorting of specific mRNAs to different subcellular domains is a complex process involving the assembly and trafficking of large ribonucleoprotein (RNP) complexes. How specificity is conferred on this process, particularly in cells where several mRNAs localization pathways operate concurrently, is poorly understood. This proposal integrates biochemical, genetic, and imaging-based approaches to investigate how mRNAs are specifically recognized and packaged into localization competent particles, how these RNP particles are adapted to different localization mechanisms, the extent to which localization pathways are interconnected, and how multiple localization pathways are coordinated within a single cell. The Drosophila oocyte and early embryo provide ideal model systems for these studies because they are equipped with several mechanistically distinct trafficking pathways that direct the localization of mRNAs essential for axis formation and germline development.
In Aim 1, we will investigate mechanisms of RNP particle assembly using biochemical approaches including tandem RNA affinity purification to isolate and characterize the components of Nanos RNP complexes. These studies will be complemented in Aim 2 by two imaging-based approaches that investigate whether concurrent trafficking pathways are coordinated through the sharing of RNP particles by different mRNAs.
Aim 3 expands our studies to determine the broader significance of mRNA localization in the development and function of polarized cells through a novel genome- wide screen for transcripts with asymmetric subcellular distributions in neurons. The identification of new localized mRNAs in this screen and screens in other cell types performed by our collaborators will shed light on determinants of mRNA targeting specificity and may uncover novel roles for localized mRNAs in development and function of polarized cells.

Public Health Relevance

Messenger RNA localization is an important mechanism for producing proteins in particular regions of cells where their functions are needed and plays a well documented role in animal development and in the formation and function of polarized cells like motile fibroblasts and neurons. Mutations in proteins that regulate messenger RNA localization have been associated with a variety of cancers and disruption of neuronal messenger RNA localization may contribute to mental retardation and neuromuscular disorders. The proposed studies will shed light on the mechanisms used to move mRNAs to their specific destinations and how the disruption of this process may lead to diseases like cancer or neurological dysfunction.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM067758-10
Application #
8449252
Study Section
Development - 2 Study Section (DEV2)
Program Officer
Hoodbhoy, Tanya
Project Start
2003-04-01
Project End
2016-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$345,070
Indirect Cost
$127,945
Name
Princeton University
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Niepielko, Matthew G; Eagle, Whitby V I; Gavis, Elizabeth R (2018) Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ Granules. Curr Biol 28:1872-1881.e3
Eagle, Whitby V I; Yeboah-Kordieh, Daniel K; Niepielko, Matthew G et al. (2018) Distinct cis-acting elements mediate targeting and clustering of Drosophila polar granule mRNAs. Development 145:
Lerit, Dorothy A; Shebelut, Conrad W; Lawlor, Kristen J et al. (2017) Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation. Cell Rep 18:831-839
Tenenbaum, Conrad M; Misra, Mala; Alizzi, Rebecca A et al. (2017) Enclosure of Dendrites by Epidermal Cells Restricts Branching and Permits Coordinated Development of Spatially Overlapping Sensory Neurons. Cell Rep 20:3043-3056
Abbaszadeh, Evan K; Gavis, Elizabeth R (2016) Fixed and live visualization of RNAs in Drosophila oocytes and embryos. Methods 98:34-41
Trovisco, Vítor; Belaya, Katsiaryna; Nashchekin, Dmitry et al. (2016) bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring. Elife 5:
Misra, Mala; Edmund, Hendia; Ennis, Darragh et al. (2016) A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis. G3 (Bethesda) 6:2397-405
Tenenbaum, Conrad M; Gavis, Elizabeth R (2016) Removal of Drosophila Muscle Tissue from Larval Fillets for Immunofluorescence Analysis of Sensory Neurons and Epidermal Cells. J Vis Exp :
Little, Shawn C; Sinsimer, Kristina S; Lee, Jack J et al. (2015) Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat Cell Biol 17:558-68
López-Panadès, Elisenda; Gavis, Elizabeth R; Casacuberta, Elena (2015) Specific Localization of the Drosophila Telomere Transposon Proteins and RNAs, Give Insight in Their Behavior, Control and Telomere Biology in This Organism. PLoS One 10:e0128573

Showing the most recent 10 out of 25 publications