The complexity of the ubiquitin system requires advanced approaches/methodologies to identify ubiquitinated substrates, uncover diversity in targeting mechanisms, and elucidate pathways that control downstream steps. From profiling ubiquitin-protein conjugates levels on a proteome scale to the quantitative analysis of individual polyubiquitin chains, mass spectrometry is making critical advances in ubiquitin biology. These advances illuminate other important unsolved issues. For example, although ubiquitin modification sites have been identified for some proteins, for most ubiquitin substrates, lysine-acceptor sites are not yet known. Awareness of these sites provides both concrete evidence of modification and the opportunity for targeted studies. Many groups have observed that more often than not, multiple lysines within the same substrate are modified. Since a single polyubiquitin chain represents a competent degradation signal, the purpose of the additional complexity is unclear. Part of this regulatory complexity is likely attributable to the roles of several prominent proteasome-associated ubiquitin receptors, including Dsk2, Rad23, and Ddi1, commonly believed to modulated substrate recognition. To uncover the mechanism of substrate-specific regulation by these receptor proteins, the subsets of conjugates whose degradation is dependent on each will need to be identified. This proposal details how we will develop a novel strategy to determine ubiquitination sites en masse. In addition, we propose to extend our current methods and precisely quantify the amount of ubiquitination occurring on individual substrate lysines enabling hypothesis-driven experiments in vivo and in vitro in a substrate-specific manner. Finally, we will combine stable isotope labeling with shotgun proteomics to identify and differentiate substrates for yeast ubiquitin receptor proteins (UBL/UBA-containing) including Rad23, Dsk2, and Ddi1, setting the stage for similar endeavors in mammalian cells. Together, these integrated proteomics strategies will provide new insights concerning the role of ubiquitin receptor proteins and their influence on polyubiquitin chain synthesis, structure, and function for physiologically relevant ubiquitin substrates.

Public Health Relevance

The modification of a protein by ubiquitin attachment produces a signal utilized with cells for a variety of purposes. The most studied outcome of a ubiquitin-conjugated protein is the degradation (proteolysis) of the protein. However, nonproteolytic eventualities are also the subject of intense research efforts. Nearly every aspect of research within the ubiquitin system shows great promise for the improvement of human health. In addition to its critical role in normal physiology, malfunctions in protein ubiquitination have been implicated as a contributing factor in the causation of many diseases and syndromes as diverse as cancer and Alzheimer's disease. This proposal will provide new technologies to measure critical end points in ubiquitin biology including the complex structure and function of polyubiquitin (multiple ubiquitination) chain formation and the discovery of substrates for ubiquitinated protein receptors.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Membrane Biology and Protein Processing (MBPP)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Weekes, Michael P; Tomasec, Peter; Huttlin, Edward L et al. (2014) Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 157:1460-72
Murphy, J Patrick; Everley, Robert A; Coloff, Jonathan L et al. (2014) Combining amine metabolomics and quantitative proteomics of cancer cells using derivatization with isobaric tags. Anal Chem 86:3585-93
McAlister, Graeme C; Nusinow, David P; Jedrychowski, Mark P et al. (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150-8
Chantranupong, Lynne; Wolfson, Rachel L; Orozco, Jose M et al. (2014) The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9:1-8
Ordureau, Alban; Sarraf, Shireen A; Duda, David M et al. (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56:360-75
Goranov, Alexi I; Gulati, Amneet; Dephoure, Noah et al. (2013) Changes in cell morphology are coordinated with cell growth through the TORC1 pathway. Curr Biol 23:1269-79
Wilson-Grady, Joshua T; Haas, Wilhelm; Gygi, Steven P (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61:277-86
Armour, Sean M; Bennett, Eric J; Braun, Craig R et al. (2013) A high-confidence interaction map identifies SIRT1 as a mediator of acetylation of USP22 and the SAGA coactivator complex. Mol Cell Biol 33:1487-502
Johnson, Aaron; Wu, Ronghu; Peetz, Matthew et al. (2013) Heterochromatic gene silencing by activator interference and a transcription elongation barrier. J Biol Chem 288:28771-82
McAllister, Fiona E; Gygi, Steven P (2013) Correlation profiling for determining kinase-substrate relationships. Methods 61:227-35

Showing the most recent 10 out of 70 publications