Proper positioning of the mitotic spindle is essential for a number of developmental processes, including asymmetric divisions in which a polarized cell divides to produce daughters with different fates. This project addresses the mechanisms by which the conserved PAR polarity proteins and a downstream intermediate, LET-99, regulate spindle position during asymmetric divisions in the model organism Caenorhabditis elegans. Several hypotheses about LET-99 function will be tested.
In Aim 1, the genetic pathway by which the PAR proteins localize LET-99 in a cortical band will be determined by examining LET-99 localization in mutant backgrounds. In addition, the regions of the LET-99 protein that are necessary and sufficient for cortical and asymmetric localization will be identified using transgenes.
In Aim 2, the hypothesis that the cortical LET-99 band controls spindle positioning will be tested by time-lapse video microscopy of mutants with altered LET-99 distributions.
Aim 3 will test the hypothesis that LET-99 antagonizes the G protein signaling pathway that functions in spindle positioning. Genetic interactions will be examined and possible associations between LET-99 and components of the G protein pathway will be assayed using co-immunoprecipitations and two-hybrid assays.
In Aim 4, the hypothesis that the spn-2 gene acts with LET-99 to antagonize G protein signaling will be tested. In the long term, these studies will lead to an in-depth understanding of the molecular mechanisms that coordinate polarity and spindle orientation. Asymmetric divisions are important to the development of all multcellular organisms, and the PAR proteins are conserved in many organisms, including humans. Thus, insights gained from this work will be of wide relevance and could also aid in the understanding of developmental abnormalities that lead to cancer or other disorders. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM068744-02
Application #
6865387
Study Section
Special Emphasis Panel (ZRG1-DEV-1 (01))
Program Officer
Haynes, Susan R
Project Start
2004-04-01
Project End
2008-03-31
Budget Start
2005-04-01
Budget End
2006-03-31
Support Year
2
Fiscal Year
2005
Total Cost
$265,190
Indirect Cost
Name
University of California Davis
Department
Anatomy/Cell Biology
Type
Schools of Arts and Sciences
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Liro, Ma?gorzata J; Morton, Diane G; Rose, Lesilee S (2018) The kinases PIG-1 and PAR-1 act in redundant pathways to regulate asymmetric division in the EMS blastomere of C. elegans. Dev Biol 444:9-19
Price, Kari L; Rose, Lesilee S (2017) LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring. Mol Biol Cell 28:2360-2373
Starr, Daniel A; Rose, Lesilee S (2017) TorsinA regulates the LINC to moving nuclei. J Cell Biol 216:543-545
Wu, Jui-Ching; Espiritu, Eugenel B; Rose, Lesilee S (2016) The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein. Dev Biol 412:288-297
Liro, Ma?gorzata J; Rose, Lesilee S (2016) Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA. Genetics 204:1177-1189
VanGompel, Michael J W; Nguyen, Ken C Q; Hall, David H et al. (2015) A novel function for the Caenorhabditis elegans torsin OOC-5 in nucleoporin localization and nuclear import. Mol Biol Cell 26:1752-63
Rose, Lesilee; Gönczy, Pierre (2014) Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook :1-43
Espiritu, Eugenel B; Krueger, Lori E; Ye, Anna et al. (2012) CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo. Dev Biol 368:242-54
Hwang, Sue-Yun; Rose, Lesilee S (2010) Control of asymmetric cell division in early C. elegans embryogenesis: teaming-up translational repression and protein degradation. BMB Rep 43:69-78
Krueger, Lori E; Wu, Jui-Ching; Tsou, Meng-Fu Bryan et al. (2010) LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos. J Cell Biol 189:481-95

Showing the most recent 10 out of 15 publications