Innate Immunity is the most ancient and evolutionarily conserved central defense system that distinguishes host-self from non-self-microbial pathogens in plants, animals and humans. It provides the first line of inducible defense against infectious diseases and underlies the prevention of constant and omnipresent microbial invasion. A key function of innate immunity is the detection of microbe-associated molecular patterns (MAMPs), e.g., bacterial flagellin and fungal chitin, by pattern recognition receptors (PRRs) to launch appropriate defense responses. Recent discoveries have revealed remarkable convergent evolution in the recognition of diverse MAMPs by leucine- rich-repeat (LRR) receptors and the activation of multiple MAPK cascades in plants, animals and humans. Despite the universal and essential involvement of MAPK cascades in mediating MAMP signaling in plants, worms, flies, mammals and humans, the molecular mechanisms underlying the intertwined signaling webs remain mostly elusive due to the complexity of functional redundancy, mutant lethality and shared components in distinct signaling pathways. How the conserved immune responses are integrated with stress signaling sharing common regulators remains unclear. The goal of this research project is to establish a regulatory framework for the convergent MAMP and stress signaling mechanisms using Arabidopsis thaliana as a plant model system. The proposed experiments aim to integrate powerful functional genomic screens with comprehensive molecular, biochemical, cellular, genetic, genomic and chemical analyses to 1) discover new molecular links between the flagellin receptor (FLS2) complexes and MAPK cascades, 2) systematically elucidate the transcriptional network in dynamic and diverse plant defense responses, and to 3) uncover a previously unrecognized connection between TOR kinase signaling and innate immunity. Specifically, the project will focus on characterizing and integrating the newly discovered functions of RLCKs (receptor-like cytoplasmic kinases) in FLS2 signaling, flg22-triggered transcriptional networks modulated by key transcription activators and repressors, and novel TOR kinase substrates in stress and immune signaling. The project on uncovering the novel receptor-MAPK, calcium and TOR signaling mechanisms will establish new conceptual understanding in the regulation of immune responses and transcriptional networks beyond the plant system.
Aim 1. Analyze new functions of diverse RLCKs in FLS2-MAPKKK signaling complexes.
Aim 2. Dissect the dynamic transcriptional network in convergent MAMP signaling.
Aim 3. Explore novel TOR kinase substrates in connecting stress and immune signaling

Public Health Relevance

The versatile innate immune system underlies the ancient and evolutionarily conserved mechanisms for prevention of constant and omnipresent microbial invasion, and provides the first line of inducible defense against infectious diseases in plants, animals and humans. A key function of innate immunity is the detection of microbe-associated molecular patterns and danger signals to launch appropriate defense responses. The proposed research on pattern recognition receptor kinase signaling complexes, intertwined protein kinase cascades and transcriptional networks will discover novel and fundamental molecular mechanisms in immune and stress signaling, and provide innovative tools for future improvement of agriculture, environment and renewable energy production, as well as human health in treating infectious, inflammatory and autoimmune diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM070567-11
Application #
8990004
Study Section
Special Emphasis Panel (ZRG1-CB-F (02))
Program Officer
Marino, Pamela
Project Start
2004-04-01
Project End
2017-12-31
Budget Start
2016-01-01
Budget End
2016-12-31
Support Year
11
Fiscal Year
2016
Total Cost
$297,540
Indirect Cost
$126,540
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Shi, Lin; Wu, Yue; Sheen, Jen (2018) TOR signaling in plants: conservation and innovation. Development 145:
Li, Zhenxiang; Zhang, Dandan; Xiong, Xiangyu et al. (2017) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930-936
Chung, Hoo Sun; Sheen, Jen (2017) MAPK Assays in Arabidopsis MAMP-PRR Signal Transduction. Methods Mol Biol 1578:155-166
Liu, Kun-Hsiang; Niu, Yajie; Konishi, Mineko et al. (2017) Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature 545:311-316
Kim, Hyeon-Ji; Wu, Chung-Yi; Yu, Hui-Ming et al. (2017) Dual CLAVATA3 Peptides in Arabidopsis Shoot Stem Cell Signaling. J Plant Biol 60:506-512
Li, Lei; Sheen, Jen (2016) Dynamic and diverse sugar signaling. Curr Opin Plant Biol 33:116-125
Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie et al. (2015) Pathogen-secreted proteases activate a novel plant immune pathway. Nature 521:213-6
Li, Jian-Feng; Zhang, Dandan; Sheen, Jen (2015) Targeted plant genome editing via the CRISPR/Cas9 technology. Methods Mol Biol 1284:239-55
Xiong, Yan; Sheen, Jen (2015) Novel links in the plant TOR kinase signaling network. Curr Opin Plant Biol 28:83-91
Hamel, Louis-Philippe; Sheen, Jen; Séguin, Armand (2014) Ancient signals: comparative genomics of green plant CDPKs. Trends Plant Sci 19:79-89

Showing the most recent 10 out of 40 publications