Molecular motors that drive cargo transport along cytoskeletal filaments are critical for processes such as cell division, cell motility, intracellular trafficking and ciliary function. Kinesins are a superfamily of molecular motors that use the energy of ATP hydrolysis to move along or destabilize microtubule filaments. Much attention has been paid to the chemomechanical cycle and cellular functions of kinesin motors. An important aspect that is less understood is how motor proteins are regulated in cells to ensure their activity at the proper place and time. By using in vivo model systems that incorporate the complexity of cargo/motor complexes and their regulatory mechanisms, as well as in vitro biochemical and biophysical methods, we aim to understand the regulatory mechanisms that control kinesin activity and transport events inside cells. We will analyze roles of different kinesin-2 family members in intraflagellar transport (IFT) and specifically, their contributions to building primary cilia versus the delivery of molecules required for sensation and signaling. We will determine the mechanisms by which ciliary access of kinesin motors is regulated by importin proteins and a Ran gradient. We will explore the regulatory mechanisms that control kinesin motor activity and location during ciliary resorption and entry into mitosis. This work will provide exciting new insights into how the regulation of motor proteins gives rise to coordinated transport of protein complexes in cells and will suggest therapeutic targets in human disease.

Public Health Relevance

Kinesin motors are nanomachines that drive cellular processes such as cell division, intracellular transport, and ciliary function. The work in this proposal will aid in the knowledge and treatment of kinesin-based human pathologies such as neurodegeneration, cancer and a group of diseases known collectively as the ciliopathies.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Anatomy/Cell Biology
Schools of Medicine
Ann Arbor
United States
Zip Code
Yao, Xin-Qiu; Cato, M Claire; Labudde, Emily et al. (2017) Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation. J Biol Chem 292:16032-16043
Ravindran, Madhu Sudhan; Engelke, Martin F; Verhey, Kristen J et al. (2017) Exploiting the kinesin-1 molecular motor to generate a virus membrane penetration site. Nat Commun 8:15496
Breznau, Elaina B; Murt, Megan; Blasius, T Lynne et al. (2017) The MgcRacGAP SxIP motif tethers Centralspindlin to microtubule plus ends in Xenopus laevis. J Cell Sci 130:1809-1821
Takao, Daisuke; Verhey, Kristen J (2016) Gated entry into the ciliary compartment. Cell Mol Life Sci 73:119-27
Yao, Xin-Qiu; Malik, Rabia U; Griggs, Nicholas W et al. (2016) Dynamic Coupling and Allosteric Networks in the ? Subunit of Heterotrimeric G Proteins. J Biol Chem 291:4742-53
Park, In Young; Powell, Reid T; Tripathi, Durga Nand et al. (2016) Dual Chromatin and Cytoskeletal Remodeling by SETD2. Cell 166:950-962
Yao, Xin-Qiu; Skjærven, Lars; Grant, Barry J (2016) Rapid Characterization of Allosteric Networks with Ensemble Normal Mode Analysis. J Phys Chem B 120:8276-88
Padzik, Artur; Deshpande, Prasannakumar; Hollos, Patrik et al. (2016) KIF5C S176 Phosphorylation Regulates Microtubule Binding and Transport Efficiency in Mammalian Neurons. Front Cell Neurosci 10:57
Skjærven, Lars; Jariwala, Shashank; Yao, Xin-Qiu et al. (2016) Online interactive analysis of protein structure ensembles with Bio3D-web. Bioinformatics 32:3510-3512
Engelke, Martin F; Winding, Michael; Yue, Yang et al. (2016) Engineered kinesin motor proteins amenable to small-molecule inhibition. Nat Commun 7:11159

Showing the most recent 10 out of 40 publications