The long-term objective of this application is to develop methods for the efficient determination of atomic-resolution three-dimensional (3D) structures of large biological complexes in their native, non-crystalline states by electron cryomicroscopy (cryoEM). The emerging technology of cryoEM and 3D reconstruction offer great promise for structural studies of supramolecular machines that are difficult to study by X-ray crystallography or NMR. The PI's group has published the cryoEM-determined structures of a number of complexes at subnanometer resolutions, including the 6-Angstrom structure of rice dwarf virus (RDV), which was subsequently confirmed by X-ray crystallography. Because atomic-resolution cryoEM images have been recorded using state-of-the-art instruments, we hypothesize that powerful computation and data mining tools can be developed to process terabytes of noisy image data for determining atomic models of large complexes by cryoEM. thus significantly enhancing the value of cryoEM structures. The overall goal of this exploratory project is to build upon our initial success of subnanometer cryoEM studies to develop efficient and accurate methods for determining near-atomic resolution 3D maps from cryoEM images and for building atomic models from such maps. First, several novel computational methods will be developed to improve the accuracy and efficiency of orientation and center estimation and refinement, and to allow full contrast transfer function correction associated with the inherent depth-of-focus problem of large complexes. Second, data management solutions, structure mining and atomic model-building tools will be implemented and integrated with other disparate bioinformatics tools under a user-friendly interface of the IMIRS package to tackle the inevitable and daunting tasks associated with high-resolution cryoEM reconstructions. To eliminate potential bias inherent in method developments using simulated data, our new methods will be subjected to rigorous and unbiased testing and validation by determining the atomic structures of RDV, an ideal model system substantially studied by the Principal Investigator. This project will result in a full spectrum of efficient and effective algorithms and software tools that will be useful and freely available to the broad areas of structural and computational studies of other supramolecular assemblies. Our study fits well in two of the three themes of the NIH Roadmap initiatives: research in structural, bioinformatics and computational biology under the theme of New Pathways to Discovery and interdisciplinary research under the theme of Research Teams of the Future.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM071940-05S1
Application #
7931163
Study Section
Microscopic Imaging Study Section (MI)
Program Officer
Flicker, Paula F
Project Start
2009-09-30
Project End
2010-07-31
Budget Start
2009-09-30
Budget End
2010-07-31
Support Year
5
Fiscal Year
2009
Total Cost
$131,182
Indirect Cost
Name
University of California Los Angeles
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Ho, Chi-Min; Beck, Josh R; Lai, Mason et al. (2018) Malaria parasite translocon structure and mechanism of effector export. Nature 561:70-75
Guenther, Elizabeth L; Ge, Peng; Trinh, Hamilton et al. (2018) Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat Struct Mol Biol 25:311-319
Dai, Xinghong; Zhou, Z Hong (2018) Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 360:
Tao, Chang-Lu; Liu, Yun-Tao; Sun, Rong et al. (2018) Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy. J Neurosci 38:1493-1510
Liu, Si; Xu, Lingyi; Guan, Fenghui et al. (2018) Cryo-EM structure of the human ?5?3 GABAA receptor. Cell Res 28:958-961
Tao, Chang-Lu; Liu, Yun-Tao; Zhou, Z Hong et al. (2018) Accumulation of Dense Core Vesicles in Hippocampal Synapses Following Chronic Inactivity. Front Neuroanat 12:48
Jiang, Jiansen; Wang, Yaqiang; SuĊĦac, Lukas et al. (2018) Structure of Telomerase with Telomeric DNA. Cell 173:1179-1190.e13
Kim, Min-Sung; Chuenchor, Watchalee; Chen, Xuemin et al. (2018) Cracking the DNA Code for V(D)J Recombination. Mol Cell 70:358-370.e4
Tian, Tian; Li, Xiaorun; Liu, Yingying et al. (2018) Molecular basis for CENP-N recognition of CENP-A nucleosome on the human kinetochore. Cell Res 28:374-378
Ding, Ke; Nguyen, Lisa; Zhou, Z Hong (2018) In Situ Structures of the Polymerase Complex and RNA Genome Show How Aquareovirus Transcription Machineries Respond to Uncoating. J Virol 92:

Showing the most recent 10 out of 94 publications