Stem cells are remarkable for their ability to differentiate into diverse different tissue types, and play a central role in tissue growth, maintenance, and repair. To fulfill this role stem cells must expand their pool (during growth and development), sustain tissue homeostasis (during adulthood), and proliferate in response to injury. Well regulated mitotic divisions in stem cells ensure their remarkable ability to self-perpetuate (i.e., maintain their pool) and generate differentiated cells (i.e., replenish tissue). However, the underlying regulation is not well understood. We will investigate the roles of cellular structure and geometry in regulating stem cell division using laser microsurgery tools and time-lapse live-imaging techniques developed in our group. Several lines of evidence suggest that the orientation of the mitotic spindle is critical to stem cell divisions, and the role of the spindle in regulating stem cell divisions and differentiation will be characterized by live-imaging of spindle structures, combined with targeted perturbations using laser microsurgery to cut or remove critical structures in established model systems. The ability to selectively ablate or cut cellular structures is central to this proposal. Work in our group and others has led to the development of """"""""structural-knockout"""""""" technology, whereby subcellular structures can be targeted in space and quickly ablated using tightly focused ultrashort laser pulses. Because this technique is based on highly non-linear optical breakdown (as opposed to heating or ordinary absorption) it can produce targeted sub-cellular ablations confined to regions considerably smaller than the wavelength of light;and we have demonstrated selective ablation of regions 100 nm across in cells. We will apply this technology to selectively disrupt cellular structures, including components of the cytoskeleton and mitotic spindle, to examine their role in stem cell growth and differentiation.

Public Health Relevance

The results of proposed studies will yield a better understanding of the role of centrosomes and spindle orientation in stem cell regulation and differentiation, and through understanding these fundamental processes will greatly facilitate the development of stem cell-based therapeutics. Broad impact across the biomedical sciences will be achieved by advancing transformative laser nanosurgery technology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM072006-09
Application #
8550072
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Deatherage, James F
Project Start
2004-09-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
9
Fiscal Year
2013
Total Cost
$271,660
Indirect Cost
$90,143
Name
University of Michigan Ann Arbor
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Cheng, Jun; Tiyaboonchai, Amita; Yamashita, Yukiko M et al. (2011) Asymmetric division of cyst stem cells in Drosophila testis is ensured by anaphase spindle repositioning. Development 138:831-7
Yamashita, Yukiko M; Yuan, Hebao; Cheng, Jun et al. (2010) Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol 2:a001313
Lee, Sanghyun; An, Ran; Hunt, Alan J (2010) Liquid glass electrodes for nanofluidics. Nat Nanotechnol 5:412-6
Herbstman, Jeffrey F; Hunt, Alan J (2010) High-aspect ratio nanochannel formation by single femtosecond laser pulses. Opt Express 18:16840-8
Cheng, Jun; Waite, Andrea L; Tkaczyk, Eric R et al. (2010) Kinetic properties of ASC protein aggregation in epithelial cells. J Cell Physiol 222:738-47
Cheng, Jun; Hunt, Alan J (2009) Time-lapse live imaging of stem cells in Drosophila testis. Curr Protoc Stem Cell Biol Chapter 2:Unit 2E.2
Ke, Kevin; Cheng, Jun; Hunt, Alan J (2009) The distribution of polar ejection forces determines the amplitude of chromosome directional instability. Curr Biol 19:807-15
Cheng, Jun; Turkel, Nezaket; Hemati, Nahid et al. (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456:599-604
An, Ran; Uram, Jeffrey D; Yusko, Erik C et al. (2008) Ultrafast laser fabrication of submicrometer pores in borosilicate glass. Opt Lett 33:1153-5
Herbstman, Jeffrey F; Hunt, Alan J; Yalisove, Steven M (2008) Novel morphologies and non-linear scaling of laser damage in glass by tightly-focused femtosecond pulses. Appl Phys Lett 93:11112