In all cells, proteins are synthesized by ribosomes, megadalton RNA-protein machines that use aminoacyl-tRNA (aa-tRNA) substrates to translate messenger RNA (mRNA). In recent years, tremendous progress has been made in elucidating the structure of the ribosome in the absence and presence of substrates and various translation factors. Despite this wealth of structural information, several important questions about translation elongation and the role of rRNA in this process remain open.
Aim 1 of this proposal is to determine the role of 16S rRNA in decoding. A number of mutations in 16S rRNA that increase misreading in vivo will be characterized in vitro. The data obtained may reveal how signaling between the 30S A site and elongation factor EF-Tu is mediated.
Aim 2 of this proposal is to determine the molecular basis of ribosomal """"""""unlocking,"""""""" which limits the rate of translocation. Nine inter-subunit bridge mutations and four 30S neck mutations will be thoroughly characterized with respect to factor-independent and factor-dependent translocation in vitro. The data obtained will identify those ribosome- ribosome contacts contributing to the energy barrier for translocation and may help uncover the molecular basis of unlocking. Ribosomes are a main target of antibiotics, and defects in translation are associated with a growing number of inherited human diseases and cancers. Insight gained by this project may lead to the development of novel antimicrobial drugs and/or treatments for one or more hereditary diseases.

Public Health Relevance

One of the largest challenges facing modern medicine is the emergence of antibiotic resistance, and many classes of medically useful antibiotics target the ribosome. Defects in protein synthesis have been attributed to many inherited human diseases, and a growing body of evidence suggests that alteration in ribosome biogenesis and/or activity plays an important role in the development of several cancers. Insight gained from this project may (1) aid efforts to develop novel antibiotics and/or therapy regimes to combat pathogens with multiple-drug resistance and (2) contribute to the treatment and/or prevention of one or more hereditary diseases and/or cancers.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Bender, Michael T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Schools of Arts and Sciences
United States
Zip Code
Gibbs, Michelle R; Fredrick, Kurt (2017) Roles of elusive translational GTPases come to light and inform on the process of ribosome biogenesis in bacteria. Mol Microbiol :
Gibbs, Michelle R; Moon, Kyung-Mee; Chen, Menglin et al. (2017) Conserved GTPase LepA (Elongation Factor 4) functions in biogenesis of the 30S subunit of the 70S ribosome. Proc Natl Acad Sci U S A 114:980-985
Fleming, Ian M C; Paris, Zden?k; Gaston, Kirk W et al. (2016) A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei. Sci Rep 6:21438
Dai, Xiongfeng; Zhu, Manlu; Warren, Mya et al. (2016) Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol 2:16231
Liu, Qi; Fredrick, Kurt (2016) Intersubunit Bridges of the Bacterial Ribosome. J Mol Biol 428:2146-64
Ying, Lanqing; Fredrick, Kurt (2016) Epistasis analysis of 16S rRNA ram mutations helps define the conformational dynamics of the ribosome that influence decoding. RNA 22:499-505
Fredrick, Kurt (2015) Another look at mutations in ribosomal protein S4 lends strong support to the domain closure model. J Bacteriol 197:1014-6
Fosso, Marina Y; Zhu, Hongkun; Green, Keith D et al. (2015) Tobramycin Variants with Enhanced Ribosome-Targeting Activity. Chembiochem 16:1565-70
McClory, Sean P; Devaraj, Aishwarya; Fredrick, Kurt (2014) Distinct functional classes of ram mutations in 16S rRNA. RNA 20:496-504
Balakrishnan, Rohan; Oman, Kenji; Shoji, Shinichiro et al. (2014) The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli. Nucleic Acids Res 42:13370-83

Showing the most recent 10 out of 34 publications