? Recombination plays an essential mechanical role in meiotic chromosome segregation and defective recombination is linked to infertility, miscarriage and genetic disease in humans. The long term goal is to understand the molecular mechanism of recombination. Meiotic recombination occurs by the programmed formation and processing of DNA double-strand breaks (DSBs). DSB-ends interact sequentially with an homologous chromosome forming first a Single-End Invasion (SEI) and then a double-Holliday Junction (dHJ). The specific hypothesis is that the DSB-to-SEI and SEI-to-dHJ transitions occur via biochemically distinct processes, with unique contributions being made by the Dmc1, Rad51 and Rad52 proteins. DNA physical assays to directly monitor the chemical steps of meiotic recombination in Saccharomyces cerevisiae cells will form the cornerstone of this investigation.
The Specific Aims are: 1. To characterize the in vivo roles of Dmc1 and Rad51. Indirect effects of null mutations and lack of in vivo assays to detect relevant strand-invasion products have previously limited our understanding of Dmc1 and Rad51 function. Preliminary experiments have identified conditions in which meiosis progresses efficiently when only Dmc1 or Rad51 is present. The following aspects of Dmc1-only and Rad51-only recombination will be characterized using physical, genetic and cytological assays: (a) the DNA events of recombination; (b) the gene products involved; (c) the distribution of crossovers formed; (d) the ability to promote chromosome pairing and formation of synaptonemal complex. 2. To characterize the mechanism of the SEI-to-dHJ transition. Events following SEI formation are uncharacterized but must include interaction of the second DSB-end, DNA synthesis and ligation. Preliminary evidence suggests the second DSB-end can interact by a process of single-strand-annealing. Physical assays will be used to characterize the following two aspects of the SEI-to-dHJ transition: (a) the roles of proteins implicated in the process of single-strand-annealing will be determined by analyzing a series of mutant strains; (b) the role of DNA synthesis and the involved factors will be established using chemical inhibitors of DNA synthesis and conditional alleles of replication proteins. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM074223-04
Application #
7410060
Study Section
Molecular Genetics C Study Section (MGC)
Program Officer
Portnoy, Matthew
Project Start
2005-05-01
Project End
2010-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
4
Fiscal Year
2008
Total Cost
$239,894
Indirect Cost
Name
University of California Davis
Department
Genetics
Type
Schools of Arts and Sciences
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Owens, Shannon; Tang, Shangming; Hunter, Neil (2018) Monitoring Recombination During Meiosis in Budding Yeast. Methods Enzymol 601:275-307
Tang, Shangming; Wu, Michelle Ka Yan; Zhang, Ruoxi et al. (2015) Pervasive and essential roles of the Top3-Rmi1 decatenase orchestrate recombination and facilitate chromosome segregation in meiosis. Mol Cell 57:607-621
Hunter, Neil (2015) Meiotic Recombination: The Essence of Heredity. Cold Spring Harb Perspect Biol 7:
Lao, Jessica P; Cloud, Veronica; Huang, Chu-Chun et al. (2013) Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLoS Genet 9:e1003978
Copsey, Alice; Tang, Shangming; Jordan, Philip W et al. (2013) Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet 9:e1004071
Sasanuma, Hiroyuki; Tawaramoto, Maki S; Lao, Jessica P et al. (2013) A new protein complex promoting the assembly of Rad51 filaments. Nat Commun 4:1676
Lao, Jessica P; Tang, Shangming; Hunter, Neil (2013) Native/Denaturing two-dimensional DNA electrophoresis and its application to the analysis of recombination intermediates. Methods Mol Biol 1054:105-20
Zakharyevich, Kseniya; Tang, Shangming; Ma, Yunmei et al. (2012) Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell 149:334-47
Lao, Jessica P; Hunter, Neil (2010) Trying to avoid your sister. PLoS Biol 8:e1000519
Zakharyevich, Kseniya; Ma, Yunmei; Tang, Shangming et al. (2010) Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol Cell 40:1001-15

Showing the most recent 10 out of 18 publications