A major goal of evolutionary genetics is to understand how selection shapes patterns of DNA sequence variation, and ultimately, to connect DNA sequence variants to phenotypes that affect fitness. One promising approach to this problem is to study species that have recently expanded their ranges into new environments, to look for correlated changes in allele frequencies and environmental variables. This approach to studying environmental adaptation has been used successfully in Drosophila melanogaster where clinal variation is seen for a variety of different molecular and phenotypic traits across broad latitudinal transects. Recent work on humans has also linked changes in allele frequency to climatic variables in candidate genes for common metabolic disorders, suggesting that this approach may also allow us to identify important disease genes. The house mouse, Mus musculus, provides a unique opportunity to study environmental adaptation in the best mammalian model for humans. The proposed research will sample 260 wild mice representing 26 populations across a range of latitudes and altitudes in both North and South America. The sampling design includes paired transects for both altitude and latitude. All mice will be genotyped using a new Affymetrix SNP chip to identify candidate regions of the genome harboring genes underlying adaptation to different environments and climates. Select genomic regions will then be resequenced to identify allelic variants. Mice offer specific opportunities for functional tests not available in humans. Thus, the proposed work will also establish 16 new inbred strains of mice from extreme environments, sequence their genomes, and provide a preliminary description of their phenotypes. These resources will set the stage for future work linking particular adaptive variants to specific phenotypes, many of which are likely to be relevant for human metabolic disorders.

Public Health Relevance

Genes underlying human metabolic disorders show variation that correlates with climate, suggesting a link between environmental adaptation and disease. Mice are the premier model for humans. Here, we will study environmental adaptation in mice, identify candidate genes, and establish resources for future functional tests of the effects of variants at these genes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM074245-07
Application #
8429372
Study Section
Genetic Variation and Evolution Study Section (GVE)
Program Officer
Eckstrand, Irene A
Project Start
2005-02-01
Project End
2013-07-31
Budget Start
2013-01-01
Budget End
2013-07-31
Support Year
7
Fiscal Year
2013
Total Cost
$186,787
Indirect Cost
$65,092
Name
University of Arizona
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Carneiro, Miguel; Albert, Frank W; Afonso, Sandra et al. (2014) The genomic architecture of population divergence between subspecies of the European rabbit. PLoS Genet 10:e1003519
Lüke, Lena; Campbell, Polly; Varea Sánchez, María et al. (2014) Sexual selection on protamine and transition nuclear protein expression in mouse species. Proc Biol Sci 281:20133359
Campbell, Polly; Nachman, Michael W (2014) X-y interactions underlie sperm head abnormality in hybrid male house mice. Genetics 196:1231-40
Phifer-Rixey, Megan; Bomhoff, Matthew; Nachman, Michael W (2014) Genome-wide patterns of differentiation among house mouse subspecies. Genetics 198:283-97
Sheehan, Michael J; Nachman, Michael W (2014) Morphological and population genomic evidence that human faces have evolved to signal individual identity. Nat Commun 5:4800
Carneiro, Miguel; Baird, Stuart J E; Afonso, Sandra et al. (2013) Steep clines within a highly permeable genome across a hybrid zone between two subspecies of the European rabbit. Mol Ecol 22:2511-25
Geraldes, A; Basset, P; Smith, K L et al. (2011) Higher differentiation among subspecies of the house mouse (Mus musculus) in genomic regions with low recombination. Mol Ecol 20:4722-36
Yang, Hyuna; Wang, Jeremy R; Didion, John P et al. (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43:648-55
Good, Jeffrey M; Vanderpool, Dan; Smith, Kimberly L et al. (2011) Extraordinary sequence divergence at Tsga8, an X-linked gene involved in mouse spermiogenesis. Mol Biol Evol 28:1675-86
Good, Jeffrey M; Giger, Thomas; Dean, Matthew D et al. (2010) Widespread over-expression of the X chromosome in sterile Fýýýhybrid mice. PLoS Genet 6:

Showing the most recent 10 out of 23 publications