The long-term goal of this research is to elucidate the reaction mechanisms of NO reduction that occur at heme and non-heme diiron centers of bacterial metalloenzymes. Our studies will focus on two enzymatic systems and related bioengineered or synthetic models: 1) NO-detoxifying flavodiiron proteins (FDPs) and 2) denitrifying NO reductases (denNORs). All of the proteins within these two families are known to reduce NO to the unreactive N2O product, but they do so with wide variation in efficiency and protein matrix structure. Although several of these proteins have been characterized by X-ray crystallography, the initial steps of NO binding, iron-nitrosyl reduction, and how these catalytic events differ between systems are not well understood. The coupling of resonance Raman, FTIR, and EPR spectroscopies with rapid-freeze-quench analyses provides unique capabilities to define NO-binding geometries at diiron clusters and to follow the N-N bond formation, N-O bond cleavage, and protonation steps that must take place to convert two NO molecules to N2O and H2O. Studying a diverse group of native enzymes and models will allow us to compare and contrast structural information on iron-nitrosyl intermediates and the efficiency of the reductive and proton transfer steps of this reaction.

Public Health Relevance

A better understanding of microbial NO reductases is highly desirable since these enzymatic reactions lead to microorganisms'resistance to the mammalian immune response. Furthermore, there are no human orthologs to these microbial enzymes;they represent potential targets for new drugs.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-B (02))
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Schools of Medicine
United States
Zip Code
Jiang, Yunbo; Hayashi, Takahiro; Matsumura, Hirotoshi et al. (2014) Light-induced N?O production from a non-heme iron-nitrosyl dimer. J Am Chem Soc 136:12524-7
Matsumura, Hirotoshi; Hayashi, Takahiro; Chakraborty, Saumen et al. (2014) The production of nitrous oxide by the heme/nonheme diiron center of engineered myoglobins (Fe(B)Mbs) proceeds through a trans-iron-nitrosyl dimer. J Am Chem Soc 136:2420-31
Majumdar, Amit; Apfel, Ulf-Peter; Jiang, Yunbo et al. (2014) Versatile reactivity of a solvent-coordinated diiron(II) compound: synthesis and dioxygen reactivity of a mixed-valent Fe(II)Fe(III) species. Inorg Chem 53:167-81
Matsumura, Hirotoshi; Mo├źnne-Loccoz, Pierre (2014) Characterizing millisecond intermediates in hemoproteins using rapid-freeze-quench resonance Raman spectroscopy. Methods Mol Biol 1122:107-23
Widger, Leland R; Jiang, Yunbo; McQuilken, Alison C et al. (2014) Thioether-ligated iron(II) and iron(III)-hydroperoxo/alkylperoxo complexes with an H-bond donor in the second coordination sphere. Dalton Trans 43:7522-32
Sahu, Sumit; Widger, Leland R; Quesne, Matthew G et al. (2013) Secondary coordination sphere influence on the reactivity of nonheme iron(II) complexes: an experimental and DFT approach. J Am Chem Soc 135:10590-3
Hayashi, Takahiro; Caranto, Jonathan D; Matsumura, Hirotoshi et al. (2012) Vibrational analysis of mononitrosyl complexes in hemerythrin and flavodiiron proteins: relevance to detoxifying NO reductase. J Am Chem Soc 134:6878-84
Sivaramakrishnan, Santhosh; Ouellet, Hugues; Matsumura, Hirotoshi et al. (2012) Proximal ligand electron donation and reactivity of the cytochrome P450 ferric-peroxo anion. J Am Chem Soc 134:6673-84
Yukl, Erik T; Ioanoviciu, Alexandra; Sivaramakrishnan, Santhosh et al. (2011) Nitric oxide dioxygenation reaction in DevS and the initial response to nitric oxide in Mycobacterium tuberculosis. Biochemistry 50:1023-8
Tran, Nhut Giuc; Kalyvas, Harris; Skodje, Kelsey M et al. (2011) Phenol nitration induced by an {Fe(NO)2}(10) dinitrosyl iron complex. J Am Chem Soc 133:1184-7

Showing the most recent 10 out of 27 publications