Approximately one-third of all newly synthesized proteins in eukaryotes enter the endoplasmic reticulum (ER), a compartment in which specialized machinery exists to support the post-translation modification of polypeptides and to facilitate protein folding. Nevertheless, a significant proportion of many secreted proteins fold inefficiently. This problem is particularly evident for integral membrane proteins, given that the native conformations of these topologically complex species must be achieved in the ER lumen, within the ER membrane, and in the cytoplasm. In the event that folding is delayed or aborted, the resulting polypeptide may be selected and then targeted for degradation by the cytoplasmic proteasome. This process has been termed ER associated degradation (ERAD) and can be sub-divided into the following steps: substrate recognition, retro-translocation or dislocation (delivery to the cytoplasm), ubiquitin conjugation, and degradation. Because many membrane proteins are essential for cellular and organismal homeostasis, it is not surprising that a growing number of ERAD substrates have been linked to human disease. In order to define the pathway by which ERAD substrates are ultimately destroyed, model substrates were designed to test specific hypotheses and novel in vitro assays were developed in which each step during the degradation pathway can be examined. These approaches have been empowered by the use of reagents prepared from the yeast S. cerevisiae, which permits the use of components isolated from wild type or mutant strains. Therefore, factors that catalyze each step during ERAD can be isolated, characterized, and tested in complementary in vitro and in vivo systems. The questions asked in this application include: How is an ATP-requiring "engine", which helps extract ERAD substrates from the membrane regulated by associated factors? How is a cytoplasmic, misfolded domain recognized, retro-translocated, and destroyed when the hydrophobicity of the membrane anchor is altered, or when the domain is linked to the membrane by a lipid? Do different factors act on an ERAD substrate when the domain is positioned in the ER lumen versus cytoplasm? And, how are transmembrane domains retained in solution after substrate retro-translocation? Answers to these questions will further the applicant's long-term goal to modulate the ERAD pathway in order to off-set the catastrophic consequences of ERAD-associated diseases.

Public Health Relevance

The misfolding and degradation of integral membrane proteins can cause specific diseases, including cystic fibrosis, hyper- and hypo-tension, and diabetes. The experiments proposed in this application seek to define how recently identified factors impact the degradation of membrane proteins. Experiments will be performed in a model organism and in complementary biochemical systems. The knowledge gained from these studies may lead to the development of novel therapies and provide methods to define the pathway of disease onset.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Membrane Biology and Protein Processing (MBPP)
Program Officer
Gerratana, Barbara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Arts and Sciences
United States
Zip Code
Tran, Joseph R; Brodsky, Jeffrey L (2014) The Cdc48-Vms1 complex maintains 26S proteasome architecture. Biochem J 458:459-67
Zacchi, LucĂ­a F; Wu, Hui-Chuan; Bell, Samantha L et al. (2014) The BiP molecular chaperone plays multiple roles during the biogenesis of torsinA, an AAA+ ATPase associated with the neurological disease early-onset torsion dystonia. J Biol Chem 289:12727-47
Nakatsukasa, Kunio; Kamura, Takumi; Brodsky, Jeffrey L (2014) Recent technical developments in the study of ER-associated degradation. Curr Opin Cell Biol 29:82-91
Kolb, Alexander R; Needham, Patrick G; Rothenberg, Cari et al. (2014) ESCRT regulates surface expression of the Kir2.1 potassium channel. Mol Biol Cell 25:276-89
Alvaro, Christopher G; O'Donnell, Allyson F; Prosser, Derek C et al. (2014) Specific ?-arrestins negatively regulate Saccharomyces cerevisiae pheromone response by down-modulating the G-protein-coupled receptor Ste2. Mol Cell Biol 34:2660-81
Needham, Patrick G; Brodsky, Jeffrey L (2013) How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. Biochim Biophys Acta 1833:2447-57
Donnelly, Bridget F; Needham, Patrick G; Snyder, Avin C et al. (2013) Hsp70 and Hsp90 multichaperone complexes sequentially regulate thiazide-sensitive cotransporter endoplasmic reticulum-associated degradation and biogenesis. J Biol Chem 288:13124-35
Hecht, Karen A; Wytiaz, Victoria A; Ast, Tslil et al. (2013) Characterization of an M28 metalloprotease family member residing in the yeast vacuole. FEMS Yeast Res 13:471-84
Nakatsukasa, Kunio; Brodsky, Jeffrey L; Kamura, Takumi (2013) A stalled retrotranslocation complex reveals physical linkage between substrate recognition and proteasomal degradation during ER-associated degradation. Mol Biol Cell 24:1765-75, S1-8
Guerriero, Christopher J; Weiberth, Kurt F; Brodsky, Jeffrey L (2013) Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase. J Biol Chem 288:18506-20

Showing the most recent 10 out of 51 publications