The Sirtuins are a conserved family of NAD-dependent protein deacetylases that function in a wide variety of cellular processes, including repression of gene expression (silencing), apoptosis, and lifespan regulation. The requirement of these proteins for NAD has led to renewed interest in the NAD biosynthesis pathways in yeast and other model organisms that are used as models for the study of aging and age-associated diseases. Dissecting these pathways is critical toward understanding how Sirtuins interact with the cellular environment and respond to changes in metabolism or stress. Recent work in the lab has revealed the existence of a previously uncharacterized pathway for nicotinamide utilization that feeds through the nicotinamide riboside pathway, and will be the subject of specific aim 1. We have also recently identified thiamine biosynthesis as a metabolic pathway controlled by the Sir2 and Hst1 Sirtuins in response to changes in NAD and nicotinamide concentrations. The interesting co-regulation of the NAD and thiamine pathways in relationship to aging is the subject of specific aim 2.
In specific aim 3, we plan to continue the investigation of NAD and nicotinamide regulation of Sirtuins in the nucleus by identifying the genes that each of the yeast Sirtuins regulate at the transcriptional level. These studies are expected to spur the identification of new conserved NAD biosynthesis and Sirtuin targets for future development of age-related disease therapeutics.

Public Health Relevance

The NAD-dependent protein deacetylases (the Sirtuins) play an important role in the regulation of lifespan in multiple model organisms, including the budding yeast, Saccharomyces cerevisiae. The goal of this research project is to better understand the pathways by which NAD is synthesized in both yeast and mammalian cells, and to determine what cellular processes related to aging are controlled by the Sirtuins in response to alterations in cellular NAD levels. The large amount of conservation between the yeast biosynthesis pathways and those in higher eukaryotes any findings in yeast applicable to mammals.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Gerratana, Barbara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Virginia
Schools of Medicine
United States
Zip Code
Gartenberg, Marc R; Smith, Jeffrey S (2016) The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 203:1563-99
Wierman, Margaret B; Smith, Jeffrey S (2014) Yeast sirtuins and the regulation of aging. FEMS Yeast Res 14:73-88
Johnson, Joseph M; French, Sarah L; Osheim, Yvonne N et al. (2013) Rpd3- and spt16-mediated nucleosome assembly and transcriptional regulation on yeast ribosomal DNA genes. Mol Cell Biol 33:2748-59
McClure, Julie M; Wierman, Margaret B; Maqani, Nazif et al. (2012) Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration. J Biol Chem 287:20957-66
French, Sarah L; Sikes, Martha L; Hontz, Robert D et al. (2011) Distinguishing the roles of Topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol Cell Biol 31:482-94
Li, Mingguang; Petteys, Brian J; McClure, Julie M et al. (2010) Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol Cell Biol 30:3329-41
Smith Jr, Daniel L; Li, Chonghua; Matecic, Mirela et al. (2009) Calorie restriction effects on silencing and recombination at the yeast rDNA. Aging Cell 8:633-42
Biswas, Moumita; Maqani, Nazif; Rai, Ragini et al. (2009) Limiting the extent of the RDN1 heterochromatin domain by a silencing barrier and Sir2 protein levels in Saccharomyces cerevisiae. Mol Cell Biol 29:2889-98
McClure, Julie M; Gallo, Christopher M; Smith Jr, Daniel L et al. (2008) Pnc1p-mediated nicotinamide clearance modifies the epigenetic properties of rDNA silencing in Saccharomyces cerevisiae. Genetics 180:797-810
Weinberger, Martin; Feng, Li; Paul, Anita et al. (2007) DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS One 2:e748

Showing the most recent 10 out of 12 publications