Aggression is a near universal behavior. Among social animals, appropriately balanced aggressive behavior gives rise to a stable social organization by creating and maintaining dominance hierarchies. Inappropriate aggression has detrimental consequences for a society. Sociopathic and violent behaviors place a significant socioeconomic burden on human societies. Aggression can result from traumatic brain injury, neurodegenerative diseases, and as a comorbid condition of drug or alcohol abuse. Aggressive behavior is a typical quantitative trait, with natural variation attributable to segregating variants at multiple interacting loci, th effects of which are sensitive to the environment. Despite substantial evidence for genetic predisposition to aggressive behavior in humans, only a handful of candidate genes associated with variation in aggression have been identified in human populations. Drosophila provides an excellent model for systems genetics analysis of naturally occurring variation in aggression. We generated the Drosophila Genetic Reference Population (DGRP), which consists of 192 fully sequenced inbred strains derived from the Raleigh, USA population as a public resource for genome-wide association (GWA) analysis of quantitative traits. This population harbors substantial genetic variation for aggressive behavior and provides an essential resource for this application. Our ultimate goal is to obtain a complete understanding of the genetic architecture of aggressive behavior and biological effects of natural variants on transcriptional genetic networks.
The specific aims of this proposal are (1) to use the power of Drosophila genetics and genomics to map putative causal alleles associated with variation in aggression with high resolution and develop a statistical genetic model to predict individual aggressive behavior;(2) to derive causal transcriptional co-expression networks affecting aggressive behavior, placing novel loci identified by genetic mapping in appropriate biological context;and (3) to use mutations and RNAi to functionally test effects on aggressive behavior of genes implicated by the statistical analyses of natural variation and architecture of transcriptional networks, and to use the recently developed system for integrating transgenes in the same genomic location to perform tests for causal effects of natural alleles on aggressive behavior. Because aggression is a universal behavior and many genes in Drosophila have human orthologues, general insights derived from our proposed studies will have translational implications for human genetic studies on aggression;moreover, insights derived from systems genetic studies on aggression, will have a broad impact on our general understanding of quantitative traits, including the genetics of human behavioral disorders.

Public Health Relevance

Increased levels of aggression occur in alcoholics, Alzheimer's Disease patients, and individuals suffering from behavioral disorders, such as borderline personality disorder and intermittent explosive disorder. The social and economic costs to our society that result from violent behavior, and efforts to control it, are enormous. This study utilizes a new genetic resource, full sequenced Drosophila lines, and state-of-the-art gene expression, statistical and genetic analyses to map molecular variants affecting aggression, and derive gene expression networks causally associated with aggressive behavior. Given the evolutionary conservation of function for fundamental traits, such as aggression, genes and pathways discovered in model organisms can be incorporated as candidate genes in human linkage and association studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM076083-05A1
Application #
8371975
Study Section
Genetic Variation and Evolution Study Section (GVE)
Program Officer
Sesma, Michael A
Project Start
2006-05-01
Project End
2016-03-31
Budget Start
2012-08-01
Budget End
2013-03-31
Support Year
5
Fiscal Year
2012
Total Cost
$332,471
Indirect Cost
$113,018
Name
North Carolina State University Raleigh
Department
Genetics
Type
Schools of Earth Sciences/Natur
DUNS #
042092122
City
Raleigh
State
NC
Country
United States
Zip Code
27695
Huang, Wen; Massouras, Andreas; Inoue, Yutaka et al. (2014) Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res 24:1193-208
Mackay, Trudy F C (2014) Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 15:22-33
Zwarts, Liesbeth; Magwire, Michael M; Carbone, Mary Anna et al. (2011) Complex genetic architecture of Drosophila aggressive behavior. Proc Natl Acad Sci U S A 108:17070-5
Mackay, Trudy F C (2010) Mutations and quantitative genetic variation: lessons from Drosophila. Philos Trans R Soc Lond B Biol Sci 365:1229-39
Edwards, Alexis C; Zwarts, Liesbeth; Yamamoto, Akihiko et al. (2009) Mutations in many genes affect aggressive behavior in Drosophila melanogaster. BMC Biol 7:29
Harbison, Susan T; Carbone, Mary Anna; Ayroles, Julien F et al. (2009) Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nat Genet 41:371-5
Edwards, Alexis C; Ayroles, Julien F; Stone, Eric A et al. (2009) A transcriptional network associated with natural variation in Drosophila aggressive behavior. Genome Biol 10:R76
Ayroles, Julien F; Carbone, Mary Anna; Stone, Eric A et al. (2009) Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41:299-307
Edwards, Alexis C; Mackay, Trudy F C (2009) Quantitative trait loci for aggressive behavior in Drosophila melanogaster. Genetics 182:889-97
Mackay, Trudy F C; Stone, Eric A; Ayroles, Julien F (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565-77

Showing the most recent 10 out of 11 publications