Autophagy is an indispensable process mediating bulk protein degradation and organelle turnover in eukaryotic cells. During autophagy, cytoplasmic organelles and proteins are engulfed into a double-lipid bilayer "autophagosome" to be degraded in bulk upon autophagosome fusion with a lysosome. In addition to numerous proteins regulating autophagy, at least 15 distinct so-called "Atg" proteins are core components for autophagic membrane formation common to many forms of autophagy. Among these key core components are two families of ubiquitin-like proteins (Atg8 and Atg12), and their noncanonical conjugation systems [a noncanonical E1 enzyme (Atg7), two noncanonical E2 enzymes (Atg3 and Atg10), and a noncanonical E3 enzyme partially composed of a UBL (the Atg12~Atg5 conjugate, here ~ refers to a covalent bond)]. Despite the essential roles of these UBL conjugation cascades in the process of autophagy, and the association of defects in these pathways with numerous disease processes, our knowledge of the detailed enzymatic bases for UBL conjugation in autophagy remains relatively rudimentary. We propose to apply our expertise in UBL conjugation cascades to the mechanisms and specificities of noncanonical enzymes that conjugate UBLs during autophagy. Our research plan will utilize structural biology and biochemistry to understand mechanisms underlying Atg7-mediated initiation of autophagy UBL cascades (Aim 1) and ligation of autophagy UBLs to their targets (Aim 2).

Public Health Relevance

Autophagy is required to remove non-functional organelles and maintain protein homeostasis, and has been connected to numerous diseases, including cancers, diabetes, metabolic disorders, infections, and numerous debilitating processes associated with aging such as neurodegenerative disorders. Therefore, it is important to understand the molecular mechanisms underlying UBL conjugation in autophagy, both to provide insights into how defects in this pathway can lead to diseases, and because enzymes mediating UBL conjugation in autophagy are likely to be excellent targets for therapeutic agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM077053-07
Application #
8416428
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Gerratana, Barbara
Project Start
2006-08-01
Project End
2015-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
7
Fiscal Year
2013
Total Cost
$316,219
Indirect Cost
$135,523
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Hurley, James H; Schulman, Brenda A (2014) Atomistic autophagy: the structures of cellular self-digestion. Cell 157:300-11
Klionsky, Daniel J; Schulman, Brenda A (2014) Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21:336-45
Ordureau, Alban; Sarraf, Shireen A; Duda, David M et al. (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56:360-75
Qiu, Yu; Hofmann, Kay; Coats, Julie E et al. (2013) Binding to E1 and E3 is mutually exclusive for the human autophagy E2 Atg3. Protein Sci :
Kaiser, Stephen E; Qiu, Yu; Coats, Julie E et al. (2013) Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy 9:778-80
Taherbhoy, Asad M; Kaiser, Stephen E; Schulman, Brenda A (2012) Trans mechanism for ubiquitin-like protein transfer in autophagy. Cell Cycle 11:635-6
Tron, Adriana E; Arai, Takehiro; Duda, David M et al. (2012) The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7. Mol Cell 46:67-78
Duda, David M; Scott, Daniel C; Calabrese, Matthew F et al. (2011) Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 21:257-64
Taherbhoy, Asad M; Tait, Stephen W; Kaiser, Stephen E et al. (2011) Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell 44:451-61
Scott, Daniel C; Monda, Julie K; Grace, Christy R R et al. (2010) A dual E3 mechanism for Rub1 ligation to Cdc53. Mol Cell 39:784-96

Showing the most recent 10 out of 17 publications