Antibiotic resistance poses a significant threat to public health. The emergence of several vancomycin-resistant Staphylococcus aureus strains in recent years is particularly frightening because S. aureus is a highly virulent pathogen. There is a pressing need for new strategies to treat resistant Gram positive infections. The long term goal of the proposed research is to evaluate a largely unexplored metabolic pathway as a target for antimicrobial chemotherapy. This pathway, found in many pathogenic Gram positive bacteria, involves the biosynthesis of wall teichoic acids (WTAs). Wall teichoic acids are surface-associated anionic polymers. In some organisms these polymers are essential for survival;in S. aureus, they function as virulence factors that play a critical role in the establishment and spread of infection. Therefore, strategies to disrupt wall teichoic acid biosynthesis may have therapeutic utility.
The specific aims of the research include: I) Elucidating the enzymology of key WTA biosynthetic enzymes from B. subtilis, the major Gram positive model organism. Chemical methods, approaches, and tools will be developed to study TagA, TagB, and TagF, three enzymes involved in WTA biosynthesis in B. subtilis 168. Unusual features of these enzymes will be explored. II) Characterizing the pathway for WTA biosynthesis in S. aureus using a combination of genetics and in vitro biochemistry. The approaches developed to study the 6. subtilis enzymes will be applied to characterize the S. aureus enzymes. Unresolved questions about WTA biosynthesis in S. aureus will be addressed. III) Establishing a multi-target high throughput screen for wall teichoic acid biosynthesis. An in vitro screen for several successive enzymes involved in WTA biosynthesis will be established and implemented, and the hits will be evaluated against B. subtilis and S. aureus targets. The experiments outlined in this proposal will lay the groundwork for evaluating wall teichoic acid biosynthesis as a target for antimicrobial chemotherapy and will provide fundamental information about the WTA pathway in S. aureus and about some of the more interesting WTA enzymes.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Marino, Pamela
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Medicine
United States
Zip Code
Suzuki, Takashi; Campbell, Jennifer; Kim, Younghoon et al. (2012) Wall teichoic acid protects Staphylococcus aureus from inhibition by Congo red and other dyes. J Antimicrob Chemother 67:2143-51
Campbell, Jennifer; Singh, Atul K; Swoboda, Jonathan G et al. (2012) An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus. Antimicrob Agents Chemother 56:1810-20
Campbell, Jennifer; Singh, Atul K; Santa Maria Jr, John P et al. (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6:106-16
Suzuki, Takashi; Campbell, Jennifer; Swoboda, Jonathan G et al. (2011) Role of wall teichoic acids in Staphylococcus aureus endophthalmitis. Invest Ophthalmol Vis Sci 52:3187-92
Suzuki, Takashi; Swoboda, Jonathan G; Campbell, Jennifer et al. (2011) In vitro antimicrobial activity of wall teichoic acid biosynthesis inhibitors against Staphylococcus aureus isolates. Antimicrob Agents Chemother 55:767-74
Schirner, Kathrin; Stone, Laura K; Walker, Suzanne (2011) ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers. ACS Chem Biol 6:407-12
Lazarus, Michael B; Nam, Yunsun; Jiang, Jiaoyang et al. (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469:564-7
Swoboda, Jonathan G; Campbell, Jennifer; Meredith, Timothy C et al. (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11:35-45
Brown, Stephanie; Meredith, Timothy; Swoboda, Jonathan et al. (2010) Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. Chem Biol 17:1101-10
Lee, Kyungae; Campbell, Jennifer; Swoboda, Jonathan G et al. (2010) Development of improved inhibitors of wall teichoic acid biosynthesis with potent activity against Staphylococcus aureus. Bioorg Med Chem Lett 20:1767-70

Showing the most recent 10 out of 13 publications