Cytokines of the tumor necrosis factor (TNF) family play critical roles in the regulation of inflammation, host defense and immunity, and can induce programmed cell death in a cell type- and context-dependent manner. TNFa is a potent activator of NFicB, which leads to the synthesis of multiple anti-apoptotic and proinflammatory factors. Consequently, TNFa induces apoptosis in most cell types only when NFicB signaling or de novo protein synthesis is blocked, and how it triggers apoptosis in vivo is not well understood. Recently, we have shown that the appropriate extracellular matrix environment can override the pro-survival effects of NFicB, enabling TNFa to induce apoptosis without perturbation of either NFxB-induced transcription or cfe novo protein synthesis. The presence of the matrix proteins CCN1 (CYR61), CCN2 (CTGF), or CCN3 (NOV) enables TNFa to induce apoptosis in the otherwise resistant primary human fibroblasts. CCN1 synergizes with TNFa through binding to integrins avf35>aepi and the heparan sulfate proteoglycan syndecan-4, leading to the reactive oxygen species (ROS)-dependent biphasic activation of JNK necessary for apoptosis. Furthermore, mice with the genomic Ccn1 locus replaced with an apoptosis-defective Ccn1 allele are severely blunted in TNFa-induced apoptosis, indicating that CCN1/TNFa synergism is an important apoptotic pathway in vivo. Thus, the extracellular matrix microenvironment can profoundly regulate the apoptotic activity of TNFa, and dictate whether TNFa executes a pro-life or pro-death program. In this application, we propose to investigate this apoptotic interaction between TNFa and CCN1 in three specific aims: 1. to elucidate how the multiple CCN1 receptors interact;2. to analyze how TNFa- and CCN1-induced signaling pathways converge;and 3. to examine the physiological significance of TNFa-CCN1 interactions in vivo. We anticipate that these studies will yield important new information on how the activities of TNF cytokines can be contextually regulated by the extracellular matrix, and shed light on the many disease processes in which TNFa plays a role.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM078492-04
Application #
7860286
Study Section
Intercellular Interactions (ICI)
Program Officer
Dunsmore, Sarah
Project Start
2007-08-09
Project End
2011-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
4
Fiscal Year
2010
Total Cost
$310,860
Indirect Cost
Name
University of Illinois at Chicago
Department
Biochemistry
Type
Schools of Medicine
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Monzon, Ricardo I; Kim, Ki-Hyun; Lau, Lester F (2017) Construction and Analysis of an Allelic Series of Ccn1 Knockin Mice. Methods Mol Biol 1489:361-376
Lau, Lester F (2016) Cell surface receptors for CCN proteins. J Cell Commun Signal 10:121-7
Chen, C-C; Kim, K-H; Lau, L F (2016) The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene 35:1314-23
Kim, Ki-Hyun; Chen, Chih-Chiun; Alpini, Gianfranco et al. (2015) CCN1 induces hepatic ductular reaction through integrin ?v??-mediated activation of NF-?B. J Clin Invest 125:1886-900
Jun, Joon-Il; Kim, Ki-Hyun; Lau, Lester F (2015) The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing. Nat Commun 6:7386
Chintala, Hemabindu; Krupska, Izabela; Yan, Lulu et al. (2015) The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development 142:2364-74
Choi, J S; Kim, K-H; Lau, L F (2015) The matricellular protein CCN1 promotes mucosal healing in murine colitis through IL-6. Mucosal Immunol 8:1285-96
Zemans, Rachel L; McClendon, Jazalle; Aschner, Yael et al. (2013) Role of ?-catenin-regulated CCN matricellular proteins in epithelial repair after inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 304:L415-27
Kim, Ki-Hyun; Chen, Chih-Chiun; Monzon, Ricardo I et al. (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33:2078-90
Choi, Jinok; Lin, Ann; Shrier, Eric et al. (2013) Degradome products of the matricellular protein CCN1 as modulators of pathological angiogenesis in the retina. J Biol Chem 288:23075-89

Showing the most recent 10 out of 23 publications