The major goal set forth in R01 GM079359 called for the development of molecular tools to elucidate the underlying mechanisms of diseases. Such tools would be engineered using aptamers, which are oligonucleic acids that bind to a specific target molecule. Accordingly, during the previous funding period, we successfully developed and applied a cell-based aptamer selection technique called cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to generate multiple aptamers for the specific recognition of various types of diseased cells. Some of these aptamers were tested with clinical samples, and they showed promising results in differentiating normal from diseased samples. We also explored the use of aptamers in other biomedical applications, including bioanalysis, molecular imaging, targeted drug development and biomarker discovery. Based on this work, we have published a total of 86 papers and filed 6 patents. Great strides were made during the previous funding period in developing aptamer probes that can recognize various types of diseased cells. However, we need to further systematically investigate the clinical, bioanalytical and therapeutic potential of these aptamer probes. This renewal request responds to that need. To accomplish this, we will (1) improve aptamer selection strategies, including new aptamer selections against intra- and extracellular proteins, (2) develop and optimize DNA aptamer-based technologies for bioanalytical and clinical applications such as molecular imaging (MI) and circulating tumor cell (CTC) analysis, and (3) conduct experiments aimed at perfecting aptamer-assisted biomarker discovery.
Our specific aims i n this new research program are as follows:
Aim 1. Develop and optimize DNA aptamers to recognize individual cells and proteins.
Aim 2. Test the biomedical and biotechnological utility of aptamers in biomarker development, using membrane-bound proteins.
Aim 3. Test and validate the clinical and bioanalytical utility of aptamers in circulating tumor cell detection and molecular imaging. Overall, the principle guiding this renewal application holds that a single technology (cell-SELEX) and a single modality (nucleic acid molecules, i.e., aptamers) can, when properly optimized, produce a mutually inclusive convergence of biomedical applications leading to one single end: the early detection, diagnosis and treatment of life-threatening diseases, in particular lung cancer. To successfully conduct the necessary experiments, we have assembled a group of accomplished scientists and clinicians who have previously collaborated on many similar studies. Our project is innovative and rationally designed, our research goal is significant and important, our research and development in the last funding cycle are successful, and our preliminary results for future studies in this renewal are strong.

Public Health Relevance

Modern molecular medicine has increasingly focused on developing novel target-specific molecular probes to improve the prognosis and diagnosis of diseases and to develop the best treatment regimens. Particularly, we established the technology enabling nucleic acid molecules, or aptamers, to specifically recognize diseased cells and identify biomarkers. Our research plan will optimize these molecular probes for clinical, bioanalytical, and therapeutic applications, including molecular imaging, biosensing, biomarker identification, and drug delivery.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
4R01GM079359-08
Application #
9096834
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Edmonds, Charles G
Project Start
2007-03-01
Project End
2017-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
8
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Florida
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Pang, Xuehui; Cui, Cheng; Su, Minhui et al. (2018) Construction of self-powered cytosensing device based on ZnO nanodisks@g-C3N4 quantum dots and application in the detection of CCRF-CEM cells. Nano Energy 46:101-109
He, Lei; Lu, Danqing; Liang, Hao et al. (2018) mRNA-Initiated, Three-Dimensional DNA Amplifier Able to Function inside Living Cells. J Am Chem Soc 140:258-263
Wu, Yuan; Zhang, Liqin; Cui, Cheng et al. (2018) Enhanced Targeted Gene Transduction: AAV2 Vectors Conjugated to Multiple Aptamers via Reducible Disulfide Linkages. J Am Chem Soc 140:2-5
Pang, Xuehui; Cui, Cheng; Wan, Shuo et al. (2018) Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review. Cancers (Basel) 10:
Li, Jin; Qiu, Liping; Xie, Sitao et al. (2018) Engineering a customized nanodrug delivery system at the cellular level for targeted cancer therapy. Sci China Chem 61:497-504
Peng, Ruizi; Wang, Huijing; Lyu, Yifan et al. (2017) Facile Assembly/Disassembly of DNA Nanostructures Anchored on Cell-Mimicking Giant Vesicles. J Am Chem Soc 139:12410-12413
Liu, Yuan; Hou, Weijia; Sun, Hao et al. (2017) Thiol-ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. Chem Sci 8:6182-6187
You, Mingxu; Lyu, Yifan; Han, Da et al. (2017) DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nat Nanotechnol 12:453-459
Peng, Yongbo; Zhao, Zilong; Liu, Teng et al. (2017) Smart Human-Serum-Albumin-As2 O3 Nanodrug with Self-Amplified Folate Receptor-Targeting Ability for Chronic Myeloid Leukemia Treatment. Angew Chem Int Ed Engl 56:10845-10849
Cui, Cheng; Zhang, Hui; Wang, Ruowen et al. (2017) Recognition-then-Reaction Enables Site-Selective Bioconjugation to Proteins on Live-Cell Surfaces. Angew Chem Int Ed Engl 56:11954-11957

Showing the most recent 10 out of 177 publications