Recent advances in structural biology have enormously changed our understanding of how proteins are synthesized, how several antibiotics selectively mediate their effects and how to predict potential new antibiotic targets. They have also provided a framework for new genetic and physical investigations to further elucidate the functional significance of ribosome conformational changes. Not all protein synthesis involves invariant successive triplet decoding or the standard meaning of codons. One of the most dramatic departures is a case of receding where half the translating ribosomes bypass a 50 nucleotide sequence present in mature mRNA. The work proposed here is designed to capitalize on the unique aspects of this system to better understand the flexibility of the protein synthetic apparatus.
Aims will involve mutational analyses of the mRNA signals responsible for bypassing and characterization of their effects by mass spectrometric analyses of the protein products (Aim 1), collaborative functional analyses by cryo-electron microscopy and fluorescence spectroscopy using stopped-flow and single molecule techniques (Aim 2) and selection and characterization of cellular mutants to reveal crucial components of bypassing (Aim 3).
Aim 4 is to maintain and improve a database of all receding events (locally reprogrammed readout) and to exploit it to help correct gene annotation and extend our knowledge about receding. Clinically important examples of receding contained in the database range from, frameshifting to sense human cellular polyamine levels as part of an autpregulatory circuit, decoding SARS-CoV, HIV RNA and human PEG10, to the essential specification of selenocysteine by certain UGA codons. The study of bypassing signals and their interaction with translating ribosomes will provide insights into both standard decoding and the expanded potential of receding. Our long range goal is to understand the extent, functions and mechanisms of receding, to manipulate the efficiency of receding in order to disrupt viral propagation and abrogate certain disease states. A related goal is to create new receding signals in trans to counteract frameshift mutations and premature stop codons implicated in human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM079523-04
Application #
7760189
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Bender, Michael T
Project Start
2007-02-01
Project End
2012-01-31
Budget Start
2010-02-01
Budget End
2012-01-31
Support Year
4
Fiscal Year
2010
Total Cost
$280,866
Indirect Cost
Name
University of Utah
Department
Genetics
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Ren, Qian; Wang, Qing S; Firth, Andrew E et al. (2012) Alternative reading frame selection mediated by a tRNA-like domain of an internal ribosome entry site. Proc Natl Acad Sci U S A 109:E630-9
Loughran, Gary; Sachs, Matthew S; Atkins, John F et al. (2012) Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Res 40:2898-906
Firth, Andrew E; Wills, Norma M; Gesteland, Raymond F et al. (2011) Stimulation of stop codon readthrough: frequent presence of an extended 3' RNA structural element. Nucleic Acids Res 39:6679-91
Prere, Marie-Francoise; Canal, Isabelle; Wills, Norma M et al. (2011) The interplay of mRNA stimulatory signals required for AUU-mediated initiation and programmed -1 ribosomal frameshifting in decoding of transposable element IS911. J Bacteriol 193:2735-44
Gurvich, Olga L; Nasvall, S Joakim; Baranov, Pavel V et al. (2011) Two groups of phenylalanine biosynthetic operon leader peptides genes: a high level of apparently incidental frameshifting in decoding Escherichia coli pheL. Nucleic Acids Res 39:3079-92
Firth, Andrew E; Zevenhoven-Dobbe, Jessika C; Wills, Norma M et al. (2011) Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J Gen Virol 92:1097-106
Sharma, Virag; Firth, Andrew E; Antonov, Ivan et al. (2011) A pilot study of bacterial genes with disrupted ORFs reveals a surprising profusion of protein sequence recoding mediated by ribosomal frameshifting and transcriptional realignment. Mol Biol Evol 28:3195-211
Ivanov, Ivaylo P; Firth, Andrew E; Michel, Audrey M et al. (2011) Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res 39:4220-34
Loughran, Gary; Firth, Andrew E; Atkins, John F (2011) Ribosomal frameshifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. Proc Natl Acad Sci U S A 108:E1111-9
Melian, Ezequiel Balmori; Hinzman, Edward; Nagasaki, Tomoko et al. (2010) NS1' of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol 84:1641-7

Showing the most recent 10 out of 28 publications