Neutrophils constitute the largest class of white blood cells and are at front line of cellular immune defense. They are able to sense and migrate up concentration gradients of chemoattractants in search of primary sites of inflammation in a process termed chemotaxis. These chemoattractants include formylated peptides, complement, and various chemokines. Each chemoattractant binds to a specific receptor that activates a number of responses including chemotaxis. While much is known about the molecular interactions and signaling pathways that regulate the response to individual cues, little is known about how these pathways process multiple cues to effect migration in the appropriate direction. Furthermore, neutrophils do not simply respond to these cues but also directly regulate their production. The overall goal of the proposed research is to understand how neutrophils integrate multiple chemotactic cues in order to target sites of inflammation and clear infections.
The specific aims of the proposal are: (1) quantify how neutrophils migrate in response to different combinations of chemoattractant gradients;(2) determine the intracellular mechanisms to regulate chemotaxis in response to multiple cues;and (3) elucidate the roles of different chemotactic cues in coordinating neutrophils during the immune response. Central to overall goal and specific aims of the proposal is the development of a multiscale model of neutrophil chemotaxis that will directly link intracellular mechanisms with macroscale cellular behaviors. To facilitate model develop and simulation, we propose a novel computational framework for multiscale integration. To test and refine this model, a number of experiments targeting different scales of resolution are proposed. In order to perform experiments involving multiple chemoattractant gradients, we propose a novel microscale platform for generating gradients and assaying chemotaxis. If successful, the proposed research will uncover the intracellular regulatory mechanisms used by neutrophils to integrate and prioritize multiple chemotactic cues. The resulting model will help us understand how aberrant signaling and defects in neutrophil chemotaxis lead to diseases such as asthma and rheumatoid arthritis and guide the development of improved therapeutic for treating these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM083601-05
Application #
8118192
Study Section
Special Emphasis Panel (ZGM1-CBCB-5 (BM))
Program Officer
Somers, Scott D
Project Start
2007-09-01
Project End
2013-07-31
Budget Start
2011-08-01
Budget End
2013-07-31
Support Year
5
Fiscal Year
2011
Total Cost
$283,625
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Koirala, Santosh; Mears, Patrick; Sim, Martin et al. (2014) A nutrient-tunable bistable switch controls motility in Salmonella enterica serovar Typhimurium. MBio 5:e01611-14
Byrne, Matthew B; Kimura, Yuki; Kapoor, Ashish et al. (2014) Oscillatory behavior of neutrophils under opposing chemoattractant gradients supports a winner-take-all mechanism. PLoS One 9:e85726
Byrne, Matthew B; Leslie, Matthew T; Gaskins, H Rex et al. (2014) Methods to study the tumor microenvironment under controlled oxygen conditions. Trends Biotechnol 32:556-563
He, Yuan; Li, Dong; Cook, Sara L et al. (2013) Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell 24:3369-80
Li, Dong; Yang, Hong; Nan, Hong et al. (2012) Identification of key regulatory pathways of myeloid differentiation using an mESC-based karyotypically normal cell model. Blood 120:4712-9
Zhou, Jiaxi; Li, Dong; Wang, Fei (2012) Assessing the function of mTOR in human embryonic stem cells. Methods Mol Biol 821:361-72
He, Yuan; Kapoor, Ashish; Cook, Sara et al. (2011) The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL-C3G complex and activating Rap1 at the leading edge. J Cell Sci 124:2153-64
Li, Dong; Zhou, Jiaxi; Chowdhury, Farhan et al. (2011) Role of mechanical factors in fate decisions of stem cells. Regen Med 6:229-40
Saini, Supreet; Floess, Emily; Aldridge, Christine et al. (2011) Continuous control of flagellar gene expression by the ýý28-FlgM regulatory circuit in Salmonella enterica. Mol Microbiol 79:264-78
Shin, Myung Eun; He, Yuan; Li, Dong et al. (2010) Spatiotemporal organization, regulation, and functions of tractions during neutrophil chemotaxis. Blood 116:3297-310

Showing the most recent 10 out of 19 publications