The NF-?B/Rel family of transcription factors contributes to critical cellular processes, including immune, inflammatory and cell survival responses. As such, NF-?B is implicated in immunity-related diseases, such as autoimmunity, as well as multiple types of human malignancies. Understanding mechanisms of NF-?B regulation will not only expand our knowledge of basic cell signaling processes but also provide potential avenues to prevent and/or treat these human disorders. While a large body of literature over the last two decades describes the critical roles of ubiquitin in regulating NF-?B functions, very little is known about regulation of NF-?B signaling by SUMO (small ubiquitin-like modifier), another posttranslational modifier. The long-term goal of this project is to greatly expand our understanding of the mechanisms of NF-?B and SUMO regulation in specific physiological and pathological processes. We have recently uncovered a novel signaling role for SUMOylation of NEMO (NF-?B essential modulator) in NF-?B signaling. Our preliminary data indicate that there exist significant, novel crosstalk mechanisms between the SUMO and NF-?B pathways. Thus, in this proposal, we will test the hypothesis that crosstalk between SUMO and NF-?B signaling systems plays critical roles in regulating certain physiological and pathological processes. This research is expected to considerably expand our knowledge of the molecular links between SUMO and NF-?B pathways and their roles in specific physiological and pathological processes. This research will also generate novel reagents and tools to allow other researchers to investigate SUMO and NF-?B signaling systems in similar and different experimental models. Finally, it may also identify rational targets for drug development against human disorders, such as autoimmunity and specific types of malignancies.

Public Health Relevance

The regulation of cancer cell death is a complex process involving many different molecular pathways. This research seeks to understand the relationships between protein modification by SUMO (Small Ubiquitin-like Modifier) and NF-?B signaling, one of the major cell death-regulatory pathways. This study will significantly expand our understanding of the regulatory mechanisms for normal and cancer cell death signaling, and may also provide rationale targets for the development of new anticancer drugs.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Oncogenesis Study Section (MONC)
Program Officer
Gaillard, Shawn R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Schools of Medicine
United States
Zip Code
Jackson, Shawn S; Oberley, Christopher; Hooper, Christopher P et al. (2015) Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-?B signaling. Exp Cell Res 331:58-72
Shin, Eun Myoung; Hay, Hui Sin; Lee, Moon Hee et al. (2014) DEAD-box helicase DP103 defines metastatic potential of human breast cancers. J Clin Invest 124:3807-24
Berry, Scott M; Chin, Emily N; Jackson, Shawn S et al. (2014) Weak protein-protein interactions revealed by immiscible filtration assisted by surface tension. Anal Biochem 447:133-40
Jackson, Shawn S; Coughlin, Emma E; Coon, Joshua J et al. (2013) Identifying post-translational modifications of NEMO by tandem mass spectrometry after high affinity purification. Protein Expr Purif 92:48-53
Pak, Chorom; Miyamoto, Shigeki (2013) A new alpha in line between KRAS and NF-*B activation? Cancer Discov 3:613-5
McCool, Kevin W; Miyamoto, Shigeki (2012) DNA damage-dependent NF-*B activation: NEMO turns nuclear signaling inside out. Immunol Rev 246:311-26
Lee, Moon Hee; Mabb, Angela M; Gill, Grace B et al. (2011) NF-?B induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress. Mol Cell 43:180-91
Miyamoto, Shigeki (2011) Nuclear initiated NF-?B signaling: NEMO and ATM take center stage. Cell Res 21:116-30
Wuerzberger-Davis, Shelly M; Chen, Yuhong; Yang, David T et al. (2011) Nuclear export of the NF-?B inhibitor I?B? is required for proper B cell and secondary lymphoid tissue formation. Immunity 34:188-200
Yang, Yibin; Xia, Fang; Hermance, Nicole et al. (2011) A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-kappaB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage. Mol Cell Biol 31:2774-86

Showing the most recent 10 out of 11 publications