The broad goal of our research program is to dissect the molecular mechanisms governing the fate decisions of human pluripotent stem cells and use the knowledge to facilitate the study of early development, cell-based therapy and drug discovery. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can grow as undifferentiated cells and can differentiate into nearly all types of cells in the body. These human pluripotent stem cells have been hailed as a possible means for treating degenerative, malignant, or genetic diseases, as well as injuries due to inflammation, infection and trauma. Meanwhile, they are an invaluable research tool for modeling early human development (both normal and abnormal), and serve as a platform to develop and test new drugs. However, to fully realize their potential, a better understanding of the factors and molecular mechanisms for pluripotency and directed differentiation must be achieved. The objective of this research plan is to define the function of a newly identified protein kinase in regulating the bone morphogenetic protein (BMP) signaling pathway and specifically, neural differentiation during early embryonic development. Our research efforts in the past four years enabled us to identify several key regulatory molecules and pathways that control pluripotency and early differentiation, establish a simple and cost- effective method for highly-efficient large-scale production of neural stem cells from hESCs and hiPSCs, explore the roles of mechanical factors in regulating cellular behaviors and fate determination, and develop new gene-delivery techniques for hESCs. More recently, we have used high-throughput screening (HTS), genomics and proteomics approaches to further advance our understanding of the mechanisms governing stem cell fate. By screening a library of small-hairpin (sh)RNAs that target the human kinome (~3,500 shRNAs targeting ~700 kinases), we identified a protein kinase of previously unknown function as a key regulator of BMP signaling - one of the most critical regulatory pathways that control the fate of human pluripotent stem cells and early embryonic development. Our preliminary results suggest that the kinase promotes the degradation of BMP type I receptors (BMPR-Is) via the proteasome pathway, thereby negatively regulating the BMP pathway, and is necessary for neural development of hESCs and Xenopus laevis. In this research plan, we aim to explore how this kinase controls proteasomal degradation of BMPR-Is in hESCs (Aim 1). In addition, we will assess how the kinase regulates early neural differentiation in hESCs (Aim 2) and neurogenesis in Xenopus laevis (Aim 3). The results from the proposed study will lead to new mechanistic insights into the regulation of BMP signaling, fate determination of human pluripotent stem cells and early embryonic development, enable us to design new strategies for directed differentiation, and facilitate the utilization of hESCs and hiPSCs for cell-based therapy and regenerative medicine.

Public Health Relevance

In this proposed research, we aim to gain new mechanistic insights into the bone morphogenetic protein (BMP) signaling pathway and specifically, neural differentiation during early embryonic development. We propose to use human pluripotent stem cells and the Xenopus animal model to dissect how a newly identified protein kinase of previously unknown function promotes degradation of BMP receptors and controls neural development. The results from the proposed study will lead to new mechanistic insights into the regulation of BMP signaling, fate determination of human pluripotent stem cells and early embryonic development, enable us to design new strategies for directed differentiation and facilitate the utilization of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) for cell- based therapy and regenerative medicine.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM083812-07
Application #
8638022
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Haynes, Susan R
Project Start
2007-09-15
Project End
2016-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
7
Fiscal Year
2014
Total Cost
$310,434
Indirect Cost
$110,434
Name
University of Illinois Urbana-Champaign
Department
Anatomy/Cell Biology
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Byrne, Matthew B; Kimura, Yuki; Kapoor, Ashish et al. (2014) Oscillatory behavior of neutrophils under opposing chemoattractant gradients supports a winner-take-all mechanism. PLoS One 9:e85726
Qu, Qiuhao; Li, Dong; Louis, Kathleen R et al. (2014) High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat Commun 5:3449
He, Yuan; Li, Dong; Cook, Sara L et al. (2013) Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell 24:3369-80
Gabrielson, Nathan P; Lu, Hua; Yin, Lichen et al. (2012) Reactive and bioactive cationic ýý-helical polypeptide template for nonviral gene delivery. Angew Chem Int Ed Engl 51:1143-7
Zhou, Jiaxi; Li, Dong; Wang, Fei (2012) Assessing the function of mTOR in human embryonic stem cells. Methods Mol Biol 821:361-72
Li, Dong; Zhou, Jiaxi; Chowdhury, Farhan et al. (2011) Role of mechanical factors in fate decisions of stem cells. Regen Med 6:229-40
He, Yuan; Kapoor, Ashish; Cook, Sara et al. (2011) The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL-C3G complex and activating Rap1 at the leading edge. J Cell Sci 124:2153-64
Shin, Myung Eun; He, Yuan; Li, Dong et al. (2010) Spatiotemporal organization, regulation, and functions of tractions during neutrophil chemotaxis. Blood 116:3297-310
Li, Dong; Zhou, Jiaxi; Wang, Lu et al. (2010) Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol 191:631-44
Zhou, Jiaxi; Su, Pei; Li, Dong et al. (2010) High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells 28:1741-50

Showing the most recent 10 out of 13 publications