Computational modeling in biomechanics has become a standard methodology, both for interpreting the biomechanical and biophysical basis of experimental results and as an investigative approach in its own right when experimental investigation is difficult or impossible. The finite element (FE) method is by far the most common numerical discretization and solution technique that has been used. However, the lack of a software environment that is tailored to the needs of the field has hampered research progress, dissemination of research and sharing of models and results. To address these issues, over the initial funding period, we developed FEBio, a nonlinear implicit FE framework designed specifically for analysis in biomechanics and biophysics. In this competing continuation application, we propose to considerably expand the capabilities of FEBio - to model the biomechanics and biophysics of living tissues by capitalizing on recent advances in the continuum mechanics of reactive mixtures. We also propose to broaden the target audience of FEBio by creating tools that facilitate interfacing with custom code. To help optimize the computational costs associated with these advanced modeling techniques, we also propose to extend the application of parallel processing in FEBio beyond the solver routines. Applications of computational biomechanics and biophysics span all fields of the biomedical sciences, including areas as diverse as molecular dynamics, cell motility and mechanics, cardiovascular mechanics, musculoskeletal biomechanics and tissue engineering. The FEBio software suite will facilitate advances in these fields, which in turn will contribute to improved understanding o basic biological and medical questions as well as improved strategies for diagnosis and treatment of disease.

Public Health Relevance

Applications of computational biomechanics span all fields of the biomedical sciences, including areas as diverse as molecular dynamics, cell motility and mechanics, cardiovascular mechanics, musculoskeletal biomechanics and tissue engineering. The FEBio software suite will facilitate advances in these fields, which in turn will contribute to improved understanding of basic biological and medical questions as well as improved strategies for diagnosis and treatment of disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM083925-06
Application #
8534166
Study Section
Modeling and Analysis of Biological Systems Study Section (MABS)
Program Officer
Lyster, Peter
Project Start
2008-09-30
Project End
2016-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
6
Fiscal Year
2013
Total Cost
$292,236
Indirect Cost
$47,285
Name
University of Utah
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Edgar, Lowell T; Maas, Steve A; Guilkey, James E et al. (2015) A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro. Biomech Model Mechanobiol 14:767-82
Ateshian, Gerard A; Nims, Robert J; Maas, Steve et al. (2014) Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules. Biomech Model Mechanobiol 13:1105-20
Myers, Kristin; Ateshian, Gerard A (2014) Interstitial growth and remodeling of biological tissues: tissue composition as state variables. J Mech Behav Biomed Mater 29:544-56
Edgar, Lowell T; Hoying, James B; Utzinger, Urs et al. (2014) Mechanical interaction of angiogenic microvessels with the extracellular matrix. J Biomech Eng 136:021001
Hoying, James B; Utzinger, Urs; Weiss, Jeffrey A (2014) Formation of microvascular networks: role of stromal interactions directing angiogenic growth. Microcirculation 21:278-89
Swedberg, Aaron M; Reese, Shawn P; Maas, Steve A et al. (2014) Continuum description of the Poisson's ratio of ligament and tendon under finite deformation. J Biomech 47:3201-9
Henak, Corinne R; Ateshian, Gerard A; Weiss, Jeffrey A (2014) Finite element prediction of transchondral stress and strain in the human hip. J Biomech Eng 136:021021
Nims, Robert J; Cigan, Alexander D; Albro, Michael B et al. (2014) Synthesis rates and binding kinetics of matrix products in engineered cartilage constructs using chondrocyte-seeded agarose gels. J Biomech 47:2165-72
Henak, C R; Abraham, C L; Anderson, A E et al. (2014) Patient-specific analysis of cartilage and labrum mechanics in human hips with acetabular dysplasia. Osteoarthritis Cartilage 22:210-7
Henak, C R; Carruth, E D; Anderson, A E et al. (2013) Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula. Osteoarthritis Cartilage 21:1522-9

Showing the most recent 10 out of 31 publications