Neutrophils are innate immune cells that use directed migration to hunt and kill bacteria. This directed migration depends on several fundamental signaling capabilities. Neutrophils can migrate up chemotactic gradients spanning several orders of magnitude, requiring signaling adaptation so that cells respond to relative changes rather than steady-state concentrations of ligand. Neutrophils generate a consistent internal polarity that does not depend on the steepness of the external gradient, requiring positive feedback to amplify subtle signaling asymmetries and long-range inhibition so that protrusions can compete with one another to generate a dominant leading edge. Through genetic and pharmacological loss-of-function experiments, we know many of the core components required for chemotaxis. However, there are still fundamental gaps in our understanding of the how these signaling components interact to generate cell polarity and movement. Because the overall process of polarity is highly complex, we have developed tools to isolate and dissect individual steps in the signaling cascade to better understand the overall signaling circuit. In the last gran period, we developed a general approach for quantitative optogenetic control of intracellular signaling in mammalian cells. This system gives us unprecedented spatial and temporal control of a wide range of intracellular signals and will enable us to dissect the logic of signal processing in a manner that has not been possible with conventional tools. Quantitative control of intracellular signals has played a fundamental role in uncovering the logic of action potentials and bacterial chemotaxis, and we envision that our optogenetic tools will be similarly transformative for understanding cell polarity in neutrophils.
Our specific aims are to understand the sensory adaptation that accounts for the remarkable dynamic range of chemotaxis (Aim 1) and to dissect the positive feedback loops (Aim 2) and long-range inhibition (Aim 3) that make neutrophil polarity possible.

Public Health Relevance

Directed cell migration is essential for a number of biological processes: it allows innate immune cells to seek and destroy pathogens, it is essential for the morphogenesis of animals, and misregulation of cell migration is intimately involved in many diseases. The ability to control cell migration would be a valuable tool for combating atherosclerosis, inflammation, metastasis, and other pathological processes that occur upon the disruption of cellular guidance mechanisms.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01GM084040-07
Application #
8711487
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Nie, Zhongzhen
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Weiner, Orion D (2014) How should we be selecting our graduate students? Mol Biol Cell 25:429-30
Motta-Mena, Laura B; Reade, Anna; Mallory, Michael J et al. (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10:196-202
Park, Jason S; Rhau, Benjamin; Hermann, Aynur et al. (2014) Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal. Proc Natl Acad Sci U S A 111:5896-901
Graziano, Brian R; Weiner, Orion D (2014) Self-organization of protrusions and polarity during eukaryotic chemotaxis. Curr Opin Cell Biol 30:60-7
Tischer, Doug; Weiner, Orion D (2014) Illuminating cell signalling with optogenetic tools. Nat Rev Mol Cell Biol 15:551-8
Hoeller, Oliver; Gong, Delquin; Weiner, Orion D (2014) How to understand and outwit adaptation. Dev Cell 28:607-16
Wang, Yanqin; Ku, Chin-Jen; Zhang, Elizabeth R et al. (2013) Identifying network motifs that buffer front-to-back signaling in polarized neutrophils. Cell Rep 3:1607-16
Dandekar, Sheel N; Park, Jason S; Peng, Grace E et al. (2013) Actin dynamics rapidly reset chemoattractant receptor sensitivity following adaptation in neutrophils. Philos Trans R Soc Lond B Biol Sci 368:20130008
Hoeller, Oliver; Bolourani, Parvin; Clark, Jonathan et al. (2013) Two distinct functions for PI3-kinases in macropinocytosis. J Cell Sci 126:4296-307
Yang, Xiaojing; Jost, Anna Payne-Tobin; Weiner, Orion D et al. (2013) A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Mol Biol Cell 24:2419-30

Showing the most recent 10 out of 26 publications