The addition of a cap to the 5'end of all eukaryotic mRNAs is the first step in post-transcriptional processing, and its removal is generally thought to irreversibly commit mRNA to decay. In erythroid cells nonsense- containing ?-globin mRNA is cleaved by a cytoplasmic endonuclease to generate decay intermediates that are both stable and capped. Although most capping enzyme is nuclear, we identified a 140 kDa cytoplasmic capping enzyme complex that contains a 5'-monophosphate kinase capable of transforming the 5'end of decapped RNA into a diphosphate capping substrate. Although cytoplasmic capping enzyme is not associated with either P bodies or stress granules evidence for its biological role was demonstrated by the reduced recovery from stress of cells expressing a dominant negative form of this protein. The corollary to cytoplasmic capping is an uncapped transcriptome, evidence of which was recently identified by our lab in mammalian cells and by others in Arabidopsis. These mRNAs were linked to cytoplasmic capping by their increased representation in the uncapped pool following expression of a dominant negative form of capping enzyme.
Aim 1 will use biochemical approaches to identify and characterize the components of the cytoplasmic capping enzyme complex, with particular emphasis on the novel 5'-monophosphate kinase. These findings will guide development of molecular and genetic tools for characterizing the biological function of cytoplasmic capping. Experiments in Aim 2 will characterize the 5'ends of a selected number of the identified re-capping substrates and study dynamic changes in their cap status after interfering with cytoplasmic capping. The 3'ends of these RNAs will also be examined to determine if deadenylation and/or oligouridylylation lead to the accumulation of uncapped mRNAs. The last portion of Aim 2 will combine deep sequencing with the tools developed in Aim 1 to generate a comprehensive picture of the uncapped transcriptome and its relationship to cytoplasmic capping.
Aim 3 will address the biological relevance of cytoplasmic capping as it relates to the cycling of mRNAs between translating and non-translating states. These experiments will examine the impact of altering the size and number of P bodies and interfering with different steps leading to decapping and P body assembly, and examine the relationship of microRNA silencing to the accumulation of uncapped mRNAs and/or their restoration to the translating pool. Lastly, iTRAQ mass spectrometry will be used to determine if altering cytoplasmic capping changes the complexity of the proteome. Cytoplasmic capping has the potential to broadly impact our understanding of normal and disease processes that are linked to post-transcriptional control, including stem cells, embryonic development, cancer and neuroscience.

Public Health Relevance

The endpoint of most gene expression is the production of a protein product, and the regulation of mRNA translation is essential for such diverse processes as development, learning and memory, the cellular response to stress and the development and growth of cancers. Non-translating mRNAs are stored for later use or degraded, and little is known about the state of these stored mRNAs or how they are re-activated. This proposal examines cytoplasmic capping as a new regulatory process with broad implications for post- transcriptional gene regulation, RNA silencing and translational control.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics C Study Section (MGC)
Program Officer
Bender, Michael T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Schools of Medicine
United States
Zip Code
Wein, Nicolas; Vulin, Adeline; Falzarano, Maria S et al. (2014) Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med 20:992-1000
Mukherjee, Chandrama; Bakthavachalu, Baskar; Schoenberg, Daniel R (2014) The cytoplasmic capping complex assembles on adapter protein nck1 bound to the proline-rich C-terminus of Mammalian capping enzyme. PLoS Biol 12:e1001933
Patil, Deepak P; Bakthavachalu, Baskar; Schoenberg, Daniel R (2014) Poly(A) polymerase-based poly(A) length assay. Methods Mol Biol 1125:13-23
Mascarenhas, Roshan; Dougherty, Julie A; Schoenberg, Daniel R (2013) SMG6 cleavage generates metastable decay intermediates from nonsense-containing *-globin mRNA. PLoS One 8:e74791