Acetylation of histone H4 N-terminal tail plays a crucial role in gene activation in chromatin environments;and alterations in this epigenetic process can lead to various diseases. Our long-term objective is to understand how H4 acetylation regulates p53-dependent transcription to attenuate cancer development. To investigate these aspects, we have developed new protocols to interrogate the cellular functions of H4 acetylation as a signal that would facilitate the recruitment/retention of chromatin regulatory machinery at the site of gene transcription. Importantly, our development of recombinant chromatin transcription systems using wild type or mutated recombinant H4 proteins has allowed us to evaluate the contribution of each specific H4 acetylation event in p53-dependent transcription from chromatin. Our preliminary results from transcription analysis, coupled with chromatin acetylation assays, have indicated that acetylation of only a small subset of lysines in H4 tail is critical for transcriptional activation. To gain mechanistic insight into the function of H4 acetylation, we have established cell lines that stably express H4 tail domains for biochemical purification of acetylated H4 tail-associated factors. Importantly, our functional analysis revealed that the acetylated tail-associated factors could significantly enhance p53-dependent transcription. In light of specific interactions between acetylated H4 tails and regulatory factors, we also have generated cell-permeable H4 tail mimics bearing specific acetylation marks to screen for the most active H4 acetylation events in cellular transcription. Based on these results, our specific aims are (i) to investigate the specificity of H4 acetylation events at the level of p53-dependent transcription by checking inhibitory effects of mutations of H4 lysine substrates in vitro as well as by characterizing repressive actions of acetylated H4 tail mimics in vivo, (ii) to detail the molecular mechanism underlying H4 acetylation-mediated activation of p53-dependent transcription by isolating and characterizing acetylated H4 tail-associated factors that could counteract chromatin-induced repression of transcription, and (iii) to define the functional core of the H4 tail-associated factors by reconstituting the key regulatory components transcriptionally equivalent to the entire factors. Specific H4 tail-associated factors identified as playing crucial roles in p53-dependent transcription will be assigned as a target for the future design of therapeutic agents to block aberrant p53 regulation related to many human cancers.

Public Health Relevance

Our proposal describes multiple approaches to comprehensively understand how a specific chemical modification, acetylation of histone H4 protein within chromosomes, switches genes on in human cells. Since the regulation of this gene activation process is important in the control of cell growth and the establishment and maintenance of tissues and organs, the proposed studies should significantly contribute to our understanding of the molecular basis of many human diseases that are associated with uncontrolled gene expression.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics C Study Section (MGC)
Program Officer
Carter, Anthony D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Southern California
Schools of Medicine
Los Angeles
United States
Zip Code
Kim, Kyunghwan; Kim, Jin-Man; Kim, Joong-Sun et al. (2013) VprBP has intrinsic kinase activity targeting histone H2A and represses gene transcription. Mol Cell 52:459-67
Heo, K; Kim, J-S; Kim, K et al. (2013) Cell-penetrating H4 tail peptides potentiate p53-mediated transactivation via inhibition of G9a and HDAC1. Oncogene 32:2510-20
Kim, Kyunghwan; Lee, Bomi; Kim, Jaehoon et al. (2013) Linker Histone H1.2 cooperates with Cul4A and PAF1 to drive H4K31 ubiquitylation-mediated transactivation. Cell Rep 5:1690-703
Kim, Kyunghwan; Heo, Kyu; Choi, Jongkyu et al. (2012) Vpr-binding protein antagonizes p53-mediated transcription via direct interaction with H3 tail. Mol Cell Biol 32:783-96
Kim, Hyunjung; Kim, Kyunghwan; Choi, Jongkyu et al. (2012) p53 requires an intact C-terminal domain for DNA binding and transactivation. J Mol Biol 415:843-54
Choi, Jongkyu; Kim, Hyunjung; Kim, Kyunghwan et al. (2011) Selective requirement of H2B N-Terminal tail for p14ARF-induced chromatin silencing. Nucleic Acids Res 39:9167-80
Kim, Hyunjung; Heo, Kyu; Choi, Jongkyu et al. (2011) Histone variant H3.3 stimulates HSP70 transcription through cooperation with HP1ýý. Nucleic Acids Res 39:8329-41
Jeong, Kwang Won; Kim, Kyunghwan; Situ, Alan Jialun et al. (2011) Recognition of enhancer element-specific histone methylation by TIP60 in transcriptional activation. Nat Struct Mol Biol 18:1358-65
Kim, Hyunjung; Heo, Kyu; Kim, Jeong Hoon et al. (2009) Requirement of histone methyltransferase SMYD3 for estrogen receptor-mediated transcription. J Biol Chem 284:19867-77
Choi, Jongkyu; Heo, Kyu; An, Woojin (2009) Cooperative action of TIP48 and TIP49 in H2A.Z exchange catalyzed by acetylation of nucleosomal H2A. Nucleic Acids Res 37:5993-6007