The overarching goal of this proposal is the development of new methods to generate enantioenriched organic compounds. These products are valuable precursors to more elaborate small molecules that are medicinal agents and/or more complex biologically active natural products. The proposed methods specifically target the concise synthesis of 1-amino acids, 1,2-diamino acids, 1-aminophosphonic acids and chiral secondary amines. These methods are based on the development of chiral proton catalysts as new chiral, non-racemic reagents for enantioselective synthesis. The complexes are readily prepared organocatalysts, and are often bench stable solids. They are metal free, and therefore may be referred to as organic catalysts. These studies have the potential to impact the synthesis of both small molecule and """"""""biologic"""""""" therapeutic agents. Moreover, the methods enable the metal-free production of functionally dense, single enantiomer (and diastereomer) organic compounds.

Public Health Relevance

This proposal describes the development of chiral small molecule organocatalysts and the corresponding enantioselective reactions. In a single step, chiral nonracemic secondary amines and their derivatives (1-amino acids, 1-aminophosphonates, 1,2- diamino acids) are produced in stereochemically enriched form. These chemical commodities are common subunits of biologically active natural products, biologics, and small molecule therapeutics.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Lees, Robert G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Arts and Sciences
United States
Zip Code
Tsukanov, Sergey V; Johnson, Martin D; May, Scott A et al. (2016) Development of an Intermittent-Flow Enantioselective Aza-Henry Reaction Using an Arylnitromethane and Homogeneous Brønsted Acid-Base Catalyst with Recycle. Org Process Res Dev 20:215-226
Grace, Christy R; Ban, David; Min, Jaeki et al. (2016) Monitoring Ligand-Induced Protein Ordering in Drug Discovery. J Mol Biol 428:1290-303
Vara, Brandon A; Struble, Thomas J; Wang, Weiwei et al. (2015) Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst. J Am Chem Soc 137:7302-5
Sprague, Daniel J; Nugent, Benjamin M; Yoder, Ryan A et al. (2015) Adaptation of a small-molecule hydrogen-bond donor catalyst to an enantioselective hetero-Diels-Alder reaction hypothesized for brevianamide biosynthesis. Org Lett 17:880-3
Liu, Yan; Hawkins, Oriana E; Vilgelm, Anna E et al. (2015) Combining an Aurora Kinase Inhibitor and a Death Receptor Ligand/Agonist Antibody Triggers Apoptosis in Melanoma Cells and Prevents Tumor Growth in Preclinical Mouse Models. Clin Cancer Res 21:5338-48
Schwieter, Kenneth E; Johnston, Jeffrey N (2015) Enantioselective Addition of Bromonitromethane to Aliphatic N-Boc Aldimines Using a Homogeneous Bifunctional Chiral Organocatalyst. ACS Catal 5:6559-6562
Vilgelm, Anna E; Pawlikowski, Jeff S; Liu, Yan et al. (2015) Mdm2 and aurora kinase a inhibitors synergize to block melanoma growth by driving apoptosis and immune clearance of tumor cells. Cancer Res 75:181-93
Toda, Yasunori; Pink, Maren; Johnston, Jeffrey N (2014) Brønsted acid catalyzed phosphoramidic acid additions to alkenes: diastereo- and enantioselective halogenative cyclizations for the synthesis of C- and P-chiral phosphoramidates. J Am Chem Soc 136:14734-7
Makley, Dawn M; Johnston, Jeffrey N (2014) Silyl imine electrophiles in enantioselective catalysis: a Rosetta Stone for peptide homologation, enabling diverse N-protected aryl glycines from aldehydes in three steps. Org Lett 16:3146-9
Vara, Brandon A; Mayasundari, Anand; Tellis, John C et al. (2014) Organocatalytic, diastereo- and enantioselective synthesis of nonsymmetric cis-stilbene diamines: a platform for the preparation of single-enantiomer cis-imidazolines for protein-protein inhibition. J Org Chem 79:6913-38

Showing the most recent 10 out of 24 publications