The spindle checkpoint is a cell-cycle surveillance system that prevents premature sister-chromatid separation in mitosis and ensures the accuracy of chromosome inheritance. A multisubunit ubiquitin ligase complex called the anaphase-promoting complex or cyclosome (APC/C) is required for sister-chromatid separation. The spindle checkpoint protein Mad2 binds to Cdc20, the mitotic activator of APC/C, and inhibits APC/CCdc20, thus delaying the onset of anaphase. Mad2 is positively regulated by Mad1 and inhibited by p31comet. In mitosis, the Mad1-Mad2 core complex recruits cytosolic Mad2 to kinetochores through Mad2 conformational dimerization and converts Mad2 to an intermediate conformer (I-Mad2) more amenable to Cdc20 binding, thus facilitating checkpoint activation. During checkpoint inactivation, p31comet binds to Mad1- or Cdc20-bound Mad2, thereby preventing Mad2 activation and promoting Cdc20 autoubiquitination and the dissociation of Mad2 from Cdc20. We have previously determined the structures of both latent and active conformers of human Mad2 using nuclear magnetic resonance (NMR) spectroscopy. In unpublished preliminary results, we have determined the crystal structures of the symmetric Mad2 dimer and the Mad2-p31comet complex. These structures have provided key insights into Mad2 regulation. In this proposal, we will further investigate the regulation of Mad2 by Mad1 and p31comet.
In Aim 1, we will determine the structure of intermediate Mad2 (I-Mad2) by NMR.
In Aim 2, we will characterize the structure and function of the C-terminal domain (CTD) of Mad1.
In Aim 3, we will perform both structural and biochemical analysis of the p31comet-Mad2-Cdc20 complex. Defects of the spindle checkpoint cause aneuploidy, which is a prevalent form of genomic instability in human cancers. The proposed research will shed light on the molecular mechanism of the spindle checkpoint and help us understand the root causes of aneuploidy.

Public Health Relevance

In this proposal, we will further investigate the regulation of spindle checkpoint Mad2 by Mad1 and p31comet with a combination of structural, biochemical and cell biological approaches. Defects of the spindle checkpoint cause aneuploidy (abnormal numbers of chromosomes), which is a prevalent form of genomic instability in human cancers. The proposed research will shed light on the molecular mechanism of the spindle checkpoint and help us understand the root causes of aneuploidy.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM085004-05
Application #
8318160
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Flicker, Paula F
Project Start
2008-08-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2012
Total Cost
$269,283
Indirect Cost
$97,765
Name
University of Texas Sw Medical Center Dallas
Department
Pharmacology
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Sackton, Katharine L; Dimova, Nevena; Zeng, Xing et al. (2014) Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature 514:646-9
Ni, Lisheng; Li, Sheng; Yu, Jianzhong et al. (2013) Structural basis for autoactivation of human Mst2 kinase and its regulation by RASSF5. Structure 21:1757-68
Kim, Soonjoung; Sun, Hongbin; Tomchick, Diana R et al. (2012) Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting. Proc Natl Acad Sci U S A 109:6549-54
Kim, Soonjoung; Sun, Hongbin; Ball, Haydn L et al. (2010) Phosphorylation of the spindle checkpoint protein Mad2 regulates its conformational transition. Proc Natl Acad Sci U S A 107:19772-7
Tian, Wei; Yu, Jianzhong; Tomchick, Diana R et al. (2010) Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc Natl Acad Sci U S A 107:7293-8
Luo, Xuelian; Yu, Hongtao (2008) Protein metamorphosis: the two-state behavior of Mad2. Structure 16:1616-25