Bacterial cells respond to the changes in their chemical environment (chemotaxis) by binding of the chemical ligand to membrane receptors, activating the multi-protein receptor signaling complex, and generating a diffusible intracellular signal that ultimately regulates the rotation of the flagella motor. The chemotactic signaling pathway in E. coli has emerged as the best-characterized signal transduction network in biology. All the protein components responsible for excitation and adaptation have been identified and characterized, and their soluble domain structures determined to atomic resolution. There have also been numerous mutagenesis, chemical cross-linking and GFP-tagging studies on chemotaxis signaling. However, the structures of the basic signaling unit consisting of the receptor, the kinase CheA and coupling protein CheW, that are essential to understand the molecular mechanism of the signal transduction remain elusive. The studies described in this proposal are targeted to obtaining high resolution structures of the ternary receptor signaling complex, as well as structures of its higher order assembly in intact cells, primarily by high resolution three-dimensional cryo- electron microscopy. We will also characterize the conformational changes of the complex upon receptor activation/inactivation using both structural methods and functional assays. These structures, combining with functional and biochemical analysis, are expected to provide a detailed understanding on how minute external chemical signals are transmitted to the histidine kinase and amplified through a large assembly of signaling complexes within the native cells. These results will also provide a foundation for generating computational models of receptor signaling systems, since the E. coli chemotaxis has been an ideal model system for understanding the molecular mechanisms of signal transduction and signal processing in general.

Public Health Relevance

The mechanism of stimulus-response coupling in bacterial chemotaxis has emerged as a paradigm for understanding the principles of intracellular signal transduction both in bacterial and eukaryotic cells. E. coli chemotaxis is also a representative of the highly conserved "two-component systems" that control processes ranging from cell differentiation and development to circadian rhythms and pathogenesis in prokaryotes including both eubacterial and archaeal species. These systems all contain two central enzymes, a histidine protein kinase and a response regulator that mediates phosphor relay signal transduction networks in microorganisms and plants. In addition, bacterial chemotaxis response is crucial for colonization and infection, and the signal transduction systems that mediate such responses are potential targets for antimicrobial drug development. A deeper understanding of the mechanism of signaling in bacterial chemotaxis is therefore of great interests for many areas of biology and medicine. Our proposed efforts for a comprehensive and integrated structural and functional analysis of chemotaxis receptor signaling complexes and complex arrays will provide insight into receptor-kinase interaction, signaling complex formation, sensory cluster formation and conformation coupling, and contribute to a better understanding of the signal transduction and signal processing in general.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Flicker, Paula F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani et al. (2014) Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles. Nat Commun 5:3593
Zhao, Gongpu; Zhang, Peijun (2014) CryoEM analysis of capsid assembly and structural changes upon interactions with a host restriction factor, TRIM5?. Methods Mol Biol 1087:13-28
Fu, Xiaofeng; Himes, Benjamin A; Ke, Danxia et al. (2014) Controlled bacterial lysis for electron tomography of native cell membranes. Structure 22:1875-82
Schirra Jr, Randall T; Zhang, Peijun (2014) Correlative fluorescence and electron microscopy. Curr Protoc Cytom 70:12.36.1-12.36.10
Hickey, Robert J; Koski, Jason; Meng, Xin et al. (2014) Size-controlled self-assembly of superparamagnetic polymersomes. ACS Nano 8:495-502
Mowrey, David D; Cui, Tanxing; Jia, Yuanyuan et al. (2013) Open-channel structures of the human glycine receptor ?1 full-length transmembrane domain. Structure 21:1897-904
Yang, Yong; Bhatti, Alexandra; Ke, Danxia et al. (2013) Exposure to a cutinase-like serine esterase triggers rapid lysis of multiple mycobacterial species. J Biol Chem 288:382-92
Jun, Sangmi; Zhao, Gongpu; Ning, Jiying et al. (2013) Correlative microscopy for 3D structural analysis of dynamic interactions. J Vis Exp :
Zhao, Gongpu; Perilla, Juan R; Yufenyuy, Ernest L et al. (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497:643-6
Zhang, Peijun; Meng, Xin; Zhao, Gongpu (2013) Tubular crystals and helical arrays: structural determination of HIV-1 capsid assemblies using iterative helical real-space reconstruction. Methods Mol Biol 955:381-99

Showing the most recent 10 out of 19 publications