A significant gap exists in understanding the mechanism of contractile-ring assembly during cytokinesis, which partitions cellular constituents into two new daughter cells and plays a crucial role in cell reproduction and cell differentiation. The long-term goal of our research is to investigate cytokinesis in yeast, in normal somatic and stem cells, as well as in cancer cells. The objective of this application is to investigate the molecular mechanism of the assembly of the contractile ring in fission yeast cytokinesis. The fission yeast Schizosaccharomyces pombe has emerged as one of the leading model systems for the analysis of cytokinesis. Not only is it genetically tractable and favorable for microscopic analysis, but it also has the smallest fully sequenced eukaryotic genome and carries out cytokinesis much like animal cells. Contractile rings consisting of actin filaments, myosin-II motors, and >30 other proteins are essential for cytokinesis in both yeast and animal cells, including humans. The majority of these proteins are conserved during evolution. The central hypothesis of this proposal is that the cytokinetic contractile ring assembles progressively at the cleavage site from a broad band of precursor nodes into a complex protein structure. Actin cross-linking proteins and Polo kinase play essential structural and signaling roles during the assembly. Based on a solid foundation of background research and strong preliminary data, this hypothesis will be tested by investigating three specific aims: 1) Elucidate the roles of the anillin Mid1p in node formation and identify its binding partners in the nodes;2) Establish the roles of actin cross-linking proteins Fimbrin and 1-actinin in coalescing the nodes into the contractile ring;3) Explore the signaling pathways that trigger node formation and node condensation into the contractile ring. A combination of cellular, genetic, biochemical, and confocal microscopic approaches will be employed in these studies. This research is significant because it will reveal how proteins work together during contractile-ring assembly in cytokinesis, and how the anillin Mid1p initiates the assembly of the contractile ring by interacting with evolutionarily conserved structural and signaling proteins. Discerning the assembly of the essential contractile-ring is an important step towards understanding cytokinesis. Additionally, it will help us understand complex actomyosin contractile systems in other cellular processes.

Public Health Relevance

Uncontrolled and misoriented cell divisions are defining characteristics of cancer. Contractile rings, tiny muscle-like force-producing structures, are the common machinery for cytokinesis and other processes including erythrocyte enucleation, morphogenetic epithelial closure, epithelial wound healing, and apoptotic cell extrusion. Thus, much of what we learned about the evolutionarily conserved proteins in cytokinesis is ultimately relevant and applicable to cancer and other human diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Cell Structure and Function (CSF)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Schools of Arts and Sciences
United States
Zip Code
Wang, Ning; Lo Presti, Libera; Zhu, Yi-Hua et al. (2014) The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. J Cell Biol 205:357-75
Lee, I-Ju; Wang, Ning; Hu, Wen et al. (2014) Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast. Mol Biol Cell 25:2735-49
Deng, Lin; Kabeche, Ruth; Wang, Ning et al. (2014) Megadalton-node assembly by binding of Skb1 to the membrane anchor Slf1. Mol Biol Cell 25:2660-8
Coffman, Valerie C; Wu, Jian-Qiu (2014) Every laboratory with a fluorescence microscope should consider counting molecules. Mol Biol Cell 25:1545-8
Coffman, Valerie C; Sees, Jennifer A; Kovar, David R et al. (2013) The formins Cdc12 and For3 cooperate during contractile ring assembly in cytokinesis. J Cell Biol 203:101-14
Zhu, Yi-Hua; Ye, Yanfang; Wu, Zhengrong et al. (2013) Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis. Mol Biol Cell 24:3187-204
Ye, Yanfang; Lee, I-Ju; Runge, Kurt W et al. (2012) Roles of putative Rho-GEF Gef2 in division-site positioning and contractile-ring function in fission yeast cytokinesis. Mol Biol Cell 23:1181-95
Wu, Pengcheng; Zhao, Ran; Ye, Yanfang et al. (2011) Roles of the DYRK kinase Pom2 in cytokinesis, mitochondrial morphology, and sporulation in fission yeast. PLoS One 6:e28000
Laporte, Damien; Coffman, Valerie C; Lee, I-Ju et al. (2011) Assembly and architecture of precursor nodes during fission yeast cytokinesis. J Cell Biol 192:1005-21
Ojkic, Nikola; Wu, Jian-Qiu; Vavylonis, Dimitrios (2011) Model of myosin node aggregation into a contractile ring: the effect of local alignment. J Phys Condens Matter 23:374103

Showing the most recent 10 out of 15 publications