Protein arginine methyltransferases (PRMTs) are a relatively new type of chromatin-modifying enzymes that catalyze the methylation of specific arginine residues in histone and nonhistone substrates. Aberrant expression of PRMTs has been observed in various human diseases. However, the biological impact of protein arginine methylation and the molecular basis of PRMT catalysis are poorly defined. Our long-term research goal is to elucidate the biochemical pathways mediated by key PRMTs that contribute to the pathogenesis of cancer and cardiovascular disorders, and to develop effective PRMT inhibitors. In this proposal, we plan to carry out studies on mechanism, regulation, and function of key PRMT enzymes, by exploring and applying new chemical biology approaches.
Two specific aims will be pursued: a) Design unique biochemical assays to elucidate the mechanism of substrate specificity regulation by PRMT1. The mechanisms that govern the substrate specificity of PRMTs are not well understood. It also remains to determine the dynamic regulation of arginine methylation. We will introduce environmentally sensitive fluorophores to probe how key motifs in the substrates dynamically regulate arginine recognition and methylation. Also, we will use expressed protein ligation to site specifically label PRMT1 with biophysical probes to investigate the conformational changes of PRMT1 during the catalytic process. Further, we will create a semi-active hetero-oligomer of PRMT1 to determine the catalytic role of PRMT1 oligomerization in regulating substrate binding and methylation. The proposed study will yield new non-radioactive assays of PRMT catalysis, provide molecular understanding of PRMT substrate specificity, and offer critical insight for designing specific PRMT1 inhibitors;b) Develop chemical probes to sort out the substrate specificity of PRMT1 in prostate cancer cells. The importance of PRMTs in prostate cancer pathogenesis is increasingly recognized. To reveal the function of PRMTs in the disease, we propose a series of unique chemical biology approaches to investigate the substrate specificity of PRMT1 in both androgen-dependent and androgen-refractory prostate cancer cells. First, we will prepare biotin-labeled PRMT1 to identify PRMT1- interactive proteins, from which substrate candidates will be determined. Second, we will design, synthesize and evaluate AdoMet analogs as chemical probes to investigate cellular substrates of PRMT1. Third, we will create new chemical probes for global mapping of arginine-methylated substrates in prostate cancer cells. The results of the proposed research will be essential for understanding the mechanism and the biological impact of PRMT-catalyzed methylation in gene regulation and signal transduction. Accomplishment of the proposed work will also provide new chemical tools for both basic PRMT biology research and facilitate the development of therapeutic agents for the treatment of carcinoma, cardiovascular disorders, and other diseases related to the deregulation of protein arginine methylation.

Public Health Relevance

Malfunctioning of protein arginine methyltransferases (PRMTs) is closely associated with the pathogenesis of various human diseases. We propose a series of chemical biology strategies to elucidate the substrate specificity and enzymatic functions of key PRMTs. This effort is of great significance for the development of potent PRMT inhibitors to treat prostate carcinoma and other diseases associated with the deregulation of protein arginine methylation. Project Narrative Malfunctioning of protein arginine methyltransferases (PRMTs) is closely associated with the pathogenesis of various human diseases. We propose a series of chemical biology strategies to elucidate the substrate specificity and enzymatic functions of key PRMTs. This effort is of great significance for the development of potent PRMT inhibitors to treat prostate carcinoma and other diseases associated with the deregulation of protein arginine methylation.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM086717-06
Application #
8725683
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Fabian, Miles
Project Start
2010-09-01
Project End
2015-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Georgia
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
City
Athens
State
GA
Country
United States
Zip Code
30602
Qian, Kun; Hu, Hao; Xu, Hui et al. (2018) Detection of PRMT1 inhibitors with stopped flow fluorescence. Signal Transduct Target Ther 3:6
Fulton, Melody D; Brown, Tyler; Zheng, Y George (2018) Mechanisms and Inhibitors of Histone Arginine Methylation. Chem Rec 18:1792-1807
Blazer, Levi L; Li, Fengling; Kennedy, Steven et al. (2017) A Suite of Biochemical Assays for Screening RNA Methyltransferase BCDIN3D. SLAS Discov 22:32-39
Kim, Sungjin; Alsaidan, Omar Awad; Goodwin, Octavia et al. (2017) Blocking Myristoylation of Src Inhibits Its Kinase Activity and Suppresses Prostate Cancer Progression. Cancer Res 77:6950-6962
Zhang, Jing; Qian, Kun; Yan, Chunli et al. (2017) Discovery of Decamidine as a New and Potent PRMT1 Inhibitor. Medchemcomm 8:440-444
Madia, Valentina Noemi; Benedetti, Rosaria; Barreca, Maria Letizia et al. (2017) Structure-Activity Relationships on Cinnamoyl Derivatives as Inhibitors of p300 Histone Acetyltransferase. ChemMedChem 12:1359-1368
Fulton, Melody D; Zhang, Jing; He, Maomao et al. (2017) Intricate Effects of ?-Amino and Lysine Modifications on Arginine Methylation of the N-Terminal Tail of Histone H4. Biochemistry 56:3539-3548
Hu, Hao; Luo, Cheng; Zheng, Y George (2016) Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1. J Biol Chem 291:26722-26738
Luan, Yepeng; Blazer, Levi L; Hu, Hao et al. (2016) Design of a fluorescent ligand targeting the S-adenosylmethionine binding site of the histone methyltransferase MLL1. Org Biomol Chem 14:631-638
Zhang, Jing; Zheng, Yujun George (2016) SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases. ACS Chem Biol 11:583-97

Showing the most recent 10 out of 43 publications