The long-term goal of this proposal is to define molecular mechanisms that regulate the trafficking of integral membrane proteins to the lysosome for degradation. Recent evidence indicates that modification of transmembrane proteins by ubiquitin is sufficient for protein sorting into this pathway. The ESCRT machinery, a set of conserved endosomal protein complexes, is proposed to directly bind to ubiquitinylated membrane proteins and govern their entry into vesicles that bud into the lumen of specialized multivesicular endosomes (MVEs). This process is particularly important for the downregulation of hormone receptors to prevent constitutive signaling, which can lead to developmental abnormalities and disease. How the ESCRT machinery coordinates the efficient capture and transport of ubiquitinylated substrates to MVEs will be addressed in this proposal. The C. elegans germline and early embryo are powerful model systems to study membrane dynamics in an intact, developing animal. Specific proteins can be efficiently depleted from oocytes using RNA interference. Additionally, oocyte maturation and fertilization reproducibly trigger the internalization and degradation of multiple transmembrane proteins, providing an ideal, physiologically relevant system for studying lysosomal protein transport. C. elegans is highly amenable to genetic manipulation and can be engineered to stably express fluorescently tagged proteins, including cell surface receptors that can be monitored by live cell microscopy. Taking advantage of this unique combination of attributes, the specific aims of this proposal are: 1) to determine mechanisms by which the ESCRT machinery recognizes substrates, 2) to define the role of PTH-2, a newly discovered ESCRT-0 binding protein, and 3) to define mechanisms that regulate cargo entry into the ESCRT pathway. Our preliminary genetic and biochemical studies have uncovered new components of the lysosomal transport pathway that associate with the ESCRT machinery. The significance of these interactions will be tested using a combination of fluorescence microscopy-based functional assays, biophysical measurements, and in vitro reconstitution experiments. These studies will provide a framework for future investigation into highly related pathways in mammalian cells.

Public Health Relevance

The directed movement of proteins and membranes between different cellular locations is a fundamental process required for the proper functioning of all eukaryotic cells. Many diseases including cancer, neurodegenerative disorders such as Parkinson's disease and Huntington's disease, and immune dysfunction can be caused by intracellular protein transport defects. The proposed research will determine how membrane trafficking pathways are appropriately regulated, enhancing our fundamental understanding of this process, which should facilitate the future identification of therapeutic targets for disease intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM088151-04
Application #
8470656
Study Section
Membrane Biology and Protein Processing (MBPP)
Program Officer
Ainsztein, Alexandra M
Project Start
2010-07-01
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
4
Fiscal Year
2013
Total Cost
$270,863
Indirect Cost
$84,570
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Wang, Lei; Johnson, Adam; Hanna, Michael et al. (2016) Eps15 membrane-binding and -bending activity acts redundantly with Fcho1 during clathrin-mediated endocytosis. Mol Biol Cell 27:2675-87
Hanna 4th, Michael G; Mela, Ioanna; Wang, Lei et al. (2016) Sar1 GTPase Activity Is Regulated by Membrane Curvature. J Biol Chem 291:1014-27
Johnson, Adam; Bhattacharya, Nilakshee; Hanna, Michael et al. (2015) TFG clusters COPII-coated transport carriers and promotes early secretory pathway organization. EMBO J 34:811-27
Li, Zao; Venegas, Victor; Nagaoka, Yuji et al. (2015) Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms. PLoS Genet 11:e1005285
Takahashi, Hirohide; Mayers, Jonathan R; Wang, Lei et al. (2015) Hrs and STAM function synergistically to bind ubiquitin-modified cargoes in vitro. Biophys J 108:76-84
Callaci, Sandhya; Morrison, Kylee; Shao, Xiangqiang et al. (2015) Phosphoregulation of the C. elegans cadherin-catenin complex. Biochem J 472:339-52
Schuh, Amber L; Hanna, Michael; Quinney, Kyle et al. (2015) The VPS-20 subunit of the endosomal sorting complex ESCRT-III exhibits an open conformation in the absence of upstream activation. Biochem J 466:625-37
Wang, Lei; Audhya, Anjon (2014) In vivo imaging of C. elegans endocytosis. Methods 68:518-28
Bahmanyar, Shirin; Biggs, Ronald; Schuh, Amber L et al. (2014) Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev 28:121-6
Wickert, Lisa E; Karta, Maya R; Audhya, Anjon et al. (2014) Simvastatin attenuates rhinovirus-induced interferon and CXCL10 secretion from monocytic cells in vitro. J Leukoc Biol 95:951-9

Showing the most recent 10 out of 28 publications