Heterotrimeric G proteins are eminent signal transducing molecules that facilitate human sensation and hormone-regulation of physiology. Traditional G protein signaling pathways are activated by the action of G protein coupled receptors (GPCRs) present on the surface of cells. Recently, new mechanisms of heterotrimeric G protein regulation have been appreciated. Enzymes that are not GPCRs activate G proteins by non-traditional means and regulate pathways not previously attributed to G protein control. Prototypes of these new G protein activators are the Ric-8 proteins. The mammalian Ric-8A homolog activates G protein alpha subunits by stimulating catalysis of GDP for GTP exchange. Ric-8 proteins likely modulate G protein signaling regulation of asymmetric (adult stem cell) and normal cell division (G protein alpha i), aspects of neurotransmission (G protein alpha q), and olfaction (G protein alpha olf). Perhaps underlying this seeming regulation of divergent G protein signaling pathways is the finding that Drosophila RIC-8 appears to be required for the proper expression and plasma membrane localization of heterotrimeric G proteins. The goal of this proposal is to understand in detail, the unique regulation of G protein physiology by both mammalian Ric-8 homologs (A and B).
The aims of the proposal are to: (1) examine the hypothesis that Ric-8B proteins activate G protein alpha s subunits by serving as guanine nucleotide exchange catalysts, (2) test the hypothesis in mammals, that Ric-8 proteins are required globally for G protein localization at the cell plasma membrane. (3) test the hypothesis that the mammalian Ric-8A homolog is responsible for activating G protein alpha i- dependent (asymmetric) cell division (4) define the authentic cellular interactions between the compendium of G protein subunits and Ric-8A or Ric-8B. The technology developed to define these interactions will also be used to uncover novel interactions between Ric-8 proteins and other proteins in addition to G proteins. Ric-8 proteins are new G protein activators. Many pharmaceuticals intervene to alter the process of GPCR-mediated G protein activation. Elucidation of the novel mechanisms by which Ric-8 proteins regulate G proteins may enable the engineering of new classes of therapeutics that intervene at the level of Ric-8 activation of G proteins. Furthermore, contributing basic knowledge towards understanding the mechanism(s) by which Ric-8 and G proteins control normal and defective stem cell division could profit: (1) the therapeutic use of stem cells to repair damaged tissues and (2) treatment of stem cell derived cancers.

Public Health Relevance

Heterotrimeric G protein activation is a primary target of pharmaceutical intervention. Defining the unique mechanisms by which Ric-8 proteins activate G proteins will enable the design of new classes of therapeutics that alter the consequences of G protein activation. This research will also define Ric-8 control of G protein-directed stem cell division and contribute efforts to use stem cells for tissue repair and the eradication of cancers derived from defectively dividing stem cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM088242-04
Application #
8323464
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Maas, Stefan
Project Start
2009-09-01
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
4
Fiscal Year
2012
Total Cost
$314,208
Indirect Cost
$110,837
Name
University of Rochester
Department
Pharmacology
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Patel, B R; Tall, G G (2016) Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQ(Q209L)-driven melanoma. Oncogenesis 5:e236
Sánchez-Fernández, Guzmán; Cabezudo, Sofía; Caballero, Álvaro et al. (2016) Protein Kinase C ζ Interacts with a Novel Binding Region of Gαq to Act as a Functional Effector. J Biol Chem 291:9513-25
Stoveken, Hannah M; Bahr, Laura L; Anders, M W et al. (2016) Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist. Mol Pharmacol 90:214-24
Carr 3rd, Richard; Koziol-White, Cynthia; Zhang, Jie et al. (2016) Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms. Mol Pharmacol 89:94-104
Stoveken, Hannah M; Hajduczok, Alexander G; Xu, Lei et al. (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A 112:6194-9
Papasergi, Makaía M; Patel, Bharti R; Tall, Gregory G (2015) The G protein α chaperone Ric-8 as a potential therapeutic target. Mol Pharmacol 87:52-63
Kan, Wei; Adjobo-Hermans, Merel; Burroughs, Michael et al. (2014) M3 muscarinic receptor interaction with phospholipase C β3 determines its signaling efficiency. J Biol Chem 289:11206-18
Tall, Gregory G (2013) Ric-8 regulation of heterotrimeric G proteins. J Recept Signal Transduct Res 33:139-43
Chan, Puiyee; Thomas, Celestine J; Sprang, Stephen R et al. (2013) Molecular chaperoning function of Ric-8 is to fold nascent heterotrimeric G protein * subunits. Proc Natl Acad Sci U S A 110:3794-9
Tall, Gregory G; Patel, Bharti R; Chan, Puiyee (2013) Ric-8 folding of G proteins better explains Ric-8 apparent amplification of G protein-coupled receptor signaling. Proc Natl Acad Sci U S A 110:E3148

Showing the most recent 10 out of 18 publications