Extra-translational role of aminoacyl-tRNA synthetases in connection to disease Abstract: My goal is to understand the expanded functions of glycyl-tRNA synthetase (GlyRS) and how they connect with Charcot-Marie-Tooth (CMT) diseases. GlyRS is one of 20 members of the aminoacyl-tRNA synthetase (AARS) family that catalyzes aminoacylation of transfer tRNAin the first step of protein synthesis. Dominant mutations of GARS (gene for GlyRS) and YARS (gene for tyrosyl-tRNA synthetase) have been identified in the human population to cause Charcot-Marie-Tooth (CMT) diseases. Also known as hereditary motor and sensory neuropathies, CMT diseases are the most common heritable peripheral neuropathy, occurring with a frequency of approximately 1 in 2500 individuals. The CMT phenotype does not arise from a reduction in the essential aminoacylation function. This observation led to our hypothesis that these two tRNA synthetases have expanded functions (beyond aminoacylation) that are critical to understanding their connection to CMT. The focus of the proposal is on GlyRS. A search for interaction partners of GlyRS identified Daxx, a protein that interacts with the cytoplasmic domain of Fas. Fas is a member of the tumor necrosis factor receptor superfamily, and the Fas-Daxx interaction enhances Fas-mediated apoptosis. Significantly, The Fas-Daxx pathway is implicated in CMT, as well as in many other neurological disorders including Amyotrophic Lateral Sclerosis and Parkinson's disease. These considerations raised the possibility that the interaction between GlyRS and Daxx is relevant to the CMT disease-causing mechanism. Surprisingly, we found that a modified form of GlyRS specifically interacts with Daxx. We have identified the modifier of GlyRS to be a ubiquitin-like protein called NEDD8. NEDDylation is known to regulate the function of its substrates. Interestingly, the residue on NEDD8 for conjugation to substrate is the C-terminal glycine, which is conserved in ubiquitin and in almost all ubiquitin-like proteins. The first reaction in NEDDylation is the adenylation of the C- terminal glycine by condensation with ATP. It is chemically the same reaction as the first step of catalysis by GlyRS in aminoacylation. This consideration led us to propose that GlyRS is involved in the NEDDylation of Daxx which, in turn, regulates Daxx-mediated apoptosis. Indeed, we found that GlyRS-associated Daxx is NEDDylated. Thus, the work proposed here will advance understanding of the extra-translational roles of AARS and their possible connection to human disease.

Public Health Relevance

This project will aid in understanding how tRNA synthetases function in connection to Charcot-Marie-Tooth disease, which is the most common hereditary neuropathy. The knowledge we gain in this study will also shed light on other neurological diseases such as Amyotrophic Lateral Sclerosis (Lou Gehrig's disease) and Parkinson's disease. Narrative This project will aid in understanding how tRNA synthetases function in connection to Charcot-Marie-Tooth disease, which is the most common hereditary neuropathy. The knowledge we gain in this study will also shed light on other neurological diseases such as Amyotrophic Lateral Sclerosis (Lou Gehrig's disease) and Parkinson's disease.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01GM088278-05
Application #
8727586
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Krasnewich, Donna M
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Zhou, Jie J; Wang, Feng; Xu, Zhiwen et al. (2014) Secreted histidyl-tRNA synthetase splice variants elaborate major epitopes for autoantibodies in inflammatory myositis. J Biol Chem 289:19269-75
Shi, Yi; Xu, Xiaoling; Zhang, Qian et al. (2014) tRNA synthetase counteracts c-Myc to develop functional vasculature. Elife 3:e02349
Guo, Min; Yang, Xiang-Lei (2014) Architecture and metamorphosis. Top Curr Chem 344:89-118
Lo, Wing-Sze; Gardiner, Elisabeth; Xu, Zhiwen et al. (2014) Human tRNA synthetase catalytic nulls with diverse functions. Science 345:328-32
Wang, Feng; Xu, Zhiwen; Zhou, Jie et al. (2013) Regulated capture by exosomes of mRNAs for cytoplasmic tRNA synthetases. J Biol Chem 288:29223-8
Ofir-Birin, Yifat; Fang, Pengfei; Bennett, Steven P et al. (2013) Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol Cell 49:30-42
Zhou, Huihao; Sun, Litao; Yang, Xiang-Lei et al. (2013) ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase. Nature 494:121-4
Xu, Xiaoling; Shi, Yi; Yang, Xiang-Lei (2013) Crystal structure of human Seryl-tRNA synthetase and Ser-SA complex reveals a molecular lever specific to higher eukaryotes. Structure 21:2078-86
Gonzalez, Michael; McLaughlin, Heather; Houlden, Henry et al. (2013) Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (MARS) in a family with late-onset CMT2. J Neurol Neurosurg Psychiatry 84:1247-9
Yang, Xiang-Lei (2013) Structural disorder in expanding the functionome of aminoacyl-tRNA synthetases. Chem Biol 20:1093-9

Showing the most recent 10 out of 18 publications