The control of gene expression by the large class of small (~22nt), noncoding microRNAs has emerged as a new mode of post-transcriptional gene regulation in animal development and disease. The microRNA-induced silencing complex (miRISC) guides microRNAs to the 3 In Aim 1, we will investigate the function of the CSD proteins in the regulation of miR- 1 target expression and binding to the AIN-1 complex. We hypothesize that the CSD proteins recruit the miR-1 target mRNAs, directly or indirectly, to the AIN-1 complex for subsequent target repression.
In Aim 2, we will test the role of the CSD proteins in AIN-1 complex formation and recruitment to the P bodies, the cytoplasmic centers for repression of microRNA target mRNAs. We hypothesize that binding of mRNA substrates by the CSD proteins is a required step for AIN-1 complex formation and targeting to P bodies. Finally, we will test the hypothesis of whether individual CSD proteins form distinct, modular AIN-1 complexes, perhaps as a way to regulate subsets of microRNA targets. We expect that these studies will provide insights into the conserved mechanisms of how microRNA targets are recognized and designated for translational inhibition or degradation.

Public Health Relevance

We have discovered a novel protein complex that we hypothesize functions to regulate the gene targets of microRNAs. MicroRNAs represent a new superfamily of small RNA molecules encoded by all animal genomes. By binding to their target mRNAs, microRNAs prevent the target genes from being translated into proteins. This new paradigm of gene regulation affects a multitude of biological processes in animal development and has been implicated in an increasing number of disease states including cancer and cardiac dysfunction. However, the mechanisms and the cellular machinery required to perform microRNA-mediated target gene regulation remain to be fully characterized. We propose to study our novel AIN-1 protein complex and its critical roles in microRNA target binding and regulation in the body muscles of our model organism, C. elegans.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM088565-05
Application #
8500366
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Bender, Michael T
Project Start
2009-08-10
Project End
2014-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$269,020
Indirect Cost
$89,319
Name
University of Michigan Ann Arbor
Department
Genetics
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Mann, Frederick G; Van Nostrand, Eric L; Friedland, Ari E et al. (2016) Deactivation of the GATA Transcription Factor ELT-2 Is a Major Driver of Normal Aging in C. elegans. PLoS Genet 12:e1005956
Han, Ting; Kim, John K (2016) Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Experimental Procedures. Methods Mol Biol 1361:77-90
Freeberg, Mallory A; Kim, John K (2016) Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Bioinformatic Analysis. Methods Mol Biol 1361:91-104
Chen, Fei; Zhou, Yu; Qi, Yingchuan B et al. (2015) Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development. Genes Dev 29:2377-90
Hu, Guowu; McQuiston, Travis; Bernard, Amélie et al. (2015) A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol 17:930-42
Alessi, Amelia F; Khivansara, Vishal; Han, Ting et al. (2015) Casein kinase II promotes target silencing by miRISC through direct phosphorylation of the DEAD-box RNA helicase CGH-1. Proc Natl Acad Sci U S A 112:E7213-22
Jin, Meiyan; He, Ding; Backues, Steven K et al. (2014) Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation. Curr Biol 24:1314-22
Tabach, Yuval; Billi, Allison C; Hayes, Gabriel D et al. (2013) Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence. Nature 493:694-8
Freeberg, Mallory A; Han, Ting; Moresco, James J et al. (2013) Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol 14:R13
Billi, Allison C; Freeberg, Mallory A; Day, Amanda M et al. (2013) A conserved upstream motif orchestrates autonomous, germline-enriched expression of Caenorhabditis elegans piRNAs. PLoS Genet 9:e1003392

Showing the most recent 10 out of 15 publications