Several studies have suggested that Alzheimer's disease (AD), one of the most common forms of dementia, might be facilitated by anesthesia and surgery. Our recent research showed that the commonly used inhalational anesthetic isoflurane could induce caspase activation and apoptosis, which in turn increases generation of amyloid 2-protein (A2), the key component of senile plaques in AD patients. These findings could have potential clinical importance since increased A2 generation and apoptosis by anesthesia could conceivably serve to trigger or exacerbate the development of AD. However, the up-stream underlying mechanisms and the down-stream consequences of the isoflurane- induced apoptosis and A2 generation (apoptosis/A2 generation) remain largely unknown. Consistent with the notions that excessive calcium can trigger or contribute to apoptosis and isoflurane can affect synaptic function, our preliminary studies have shown that isoflurane can 1) induce apoptosis/A2 generation, 2) enhance cytosolic calcium levels, and 3) reduce surface NMDA receptors in cortical neurons of naove mice. Thus, our main hypothesis is that isoflurane enhances cytosolic calcium levels to induce apoptosis/A2 generation, leading to synaptic NMDA receptor endocytosis. We will employ chemical and genetic tools through both in vitro and in vivo approaches to accomplish three Specific Aims: 1) to characterize effects of isoflurane on apoptosis/A2 generation;2) to define whether the alterations in cytosolic calcium levels are associated with isoflurane-induced apoptosis/A2 generation;and 3) to determine the effects of isoflurane on synaptic NMDA receptor endocytosis. The proposed research aims to extend our recent findings that isoflurane induces apoptosis/A2 generation to further determine the underlying mechanisms and their effects on synaptic NMDA receptor endocytosis. The data generated in this project would provide novel information regarding the mechanisms of isoflurane- induced apoptosis/A2 generation and their contribution to the impairment of NMDA receptor-mediated synaptic function. The results of this study may ultimately guide researchers and clinicians to design safer anesthetics and to provide better anesthesia care for patients, particularly senior and AD patients.

Public Health Relevance

Our recent research showed that anesthetic isoflurane induces apoptosis and increases the generation of amyloid-2 protein (A2). In the proposed research we will further characterize these effects and determine their up-stream mechanisms and down-stream consequences.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM088801-05
Application #
8400898
Study Section
Aging Systems and Geriatrics Study Section (ASG)
Program Officer
Cole, Alison E
Project Start
2009-02-01
Project End
2014-12-31
Budget Start
2013-01-01
Budget End
2014-12-31
Support Year
5
Fiscal Year
2013
Total Cost
$334,225
Indirect Cost
$140,336
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Peng, Mian; Zhang, Ce; Dong, Yuanlin et al. (2016) Battery of behavioral tests in mice to study postoperative delirium. Sci Rep 6:29874
Yuan, Jing; Cui, Guiyun; Li, Wenlu et al. (2016) Propofol Enhances Hemoglobin-Induced Cytotoxicity in Neurons. Anesth Analg 122:1024-30
Zimering, Jeffrey H; Dong, Yuanlin; Fang, Fang et al. (2016) Anesthetic Sevoflurane Causes Rho-Dependent Filopodial Shortening in Mouse Neurons. PLoS One 11:e0159637
Liang, Feng; Zhang, Yiying; Hong, Wooyoung et al. (2016) Direct Tracking of Amyloid and Tu Dynamics in Neuroblastoma Cells Using Nanoplasmonic Fiber Tip Probes. Nano Lett 16:3989-94
Wang, Hui; Xu, Zhipeng; Wu, Anshi et al. (2015) 2-deoxy-D-glucose enhances anesthetic effects in mice. Anesth Analg 120:312-9
Cheng, Baiqi; Zhang, Yiying; Wang, Arthur et al. (2015) Vitamin C Attenuates Isoflurane-Induced Caspase-3 Activation and Cognitive Impairment. Mol Neurobiol 52:1580-9
Zhang, Jie; Dong, Yuanlin; Zhou, Chen et al. (2015) Anesthetic sevoflurane reduces levels of hippocalcin and postsynaptic density protein 95. Mol Neurobiol 51:853-63
Li, Xiao-Min; Su, Fan; Ji, Mu-Huo et al. (2014) Disruption of hippocampal neuregulin 1-ErbB4 signaling contributes to the hippocampus-dependent cognitive impairment induced by isoflurane in aged mice. Anesthesiology 121:79-88
Xu, Zhipeng; Dong, Yuanlin; Wang, Hui et al. (2014) Peripheral surgical wounding and age-dependent neuroinflammation in mice. PLoS One 9:e96752
Sun, Yongxing; Zhang, Yiying; Cheng, Baiqi et al. (2014) Glucose may attenuate isoflurane-induced caspase-3 activation in H4 human neuroglioma cells. Anesth Analg 119:1373-80

Showing the most recent 10 out of 54 publications